Skip to main content

Modified Goel-Okumoto Software Reliability Model Considering Uncertainty Parameter

  • Conference paper
  • First Online:
Mathematical Modeling, Computational Intelligence Techniques and Renewable Energy

Abstract

Software reliability growth models (SRGMs) provide a means of characterizing the development process and enable software reliability practitioners to make predictions about the expected future reliability of software under development. They are represented with some parameters based on certain assumptions on testing and debugging process. Most of the SRGMs ignore the impact of uncertain factors into their reliability calculation. Therefore, sometimes, the estimated reliability of testing environment significantly differs in an actual operating environment. In this article, we explore the different uncertainty issues affecting the software reliability. We combine them into one parameter and incorporate that parameter into Goel-Okumoto reliability model. The Goel-Okumoto model is one of the simplest and widely used SRGMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lyu, M.R., Nikora A.: Applying reliability models more effectively (software). IEEE Softw. 9(4), 43–52 (1992). https://doi.org/10.1109/52.143104

  2. Haque M.A., Ahmad, N.: An effective software reliability growth model. Saf. Reliabil. 40, 2021. https://doi.org/10.1080/09617353.2021.1921547

  3. Wood, A.: Software reliability growth models. Tandem Technical Report-96.1 (1996)

    Google Scholar 

  4. Xie, M., Yang, B.: A study of the effect of imperfect debugging on software development cost. IEEE Trans. Softw. Eng. 29(5), 471–473 (2003)

    Google Scholar 

  5. Almering, V., Genuchten, M.V., Cloudt, G., Sonnemans, P.J.M.: Using software reliability growth models in practice. IEEE Softw. 24(6), 82–88 (2007)

    Article  Google Scholar 

  6. Haque M.A., Ahmad, N.: Key issues in software reliability growth models. Recent Adv. Comput. Sci. Commun. 13, 1 (2020). https://doi.org/10.2174/2666255813999201012182821

  7. Jelinski, Z., Moranda, P.B.: Software reliability research. In: Freiberger, W. (ed.) Statistical Computer Performance Evaluation. Academic Press, New York, pp. 465–484 (1972)

    Google Scholar 

  8. Littlewood, B., Verall, J.L.: A Bayesian reliability growth model for computer software. J. R. Statist. Soc. Ser. C Appl. 22(3), 332–345 (1973)

    Google Scholar 

  9. Shooman, M.L.: Probabilistic methods for software reliability prediction. In: Statistical Computer Performance Evaluation, pp. 485–502. Academic Press, New York (1972)

    Google Scholar 

  10. Littlewood, B., Verall, J.L.: A Bayesian reliability growth model for computer software. J. R. Stat. Soc. Ser. C Appl. 22(3), 332–345 (1973)

    MathSciNet  Google Scholar 

  11. Goel A.L., Okumoto, K.: Time-dependent error-detection rate model for software reliability and other performance measures. IEEE Trans. Reliab. R-28(3), 206–211 (1979)

    Google Scholar 

  12. Goel, A.L.: Software reliability models: assumptions, limitations, and applicability. IEEE Trans. Softw. Eng. SE-11(12), 1411–1423 (1985)

    Google Scholar 

  13. Musa, J.D., Okumoto, K.: A logarithmic Poisson execution time model for software reliability measurement. In: Proceedings of the 7th International Conference on Software Engineering, pp. 230–238. IEEE Press, Piscataway (1984)

    Google Scholar 

  14. Yamada, S., Ohba M., Osaki, S.: s-shaped software reliability growth models and their applications. IEEE Trans. Reliab. R-33(4), 289–292 (1984)

    Google Scholar 

  15. Kapur, P.K., Garg, R.B.: A software reliability growth model for an error-removal phenomenon. In: Softw. Eng. J. 291–294 (1992)

    Google Scholar 

  16. Gokhale, S.S., Philip, T., Marinos P.N., Trivedi, K.S.: Unification of finite failure non-homogeneous Poisson process models through test coverage. In: Proceedings of 7th International Symposium on Software Reliability Engineering, White Plains, USA, pp. 299–307 (1996)

    Google Scholar 

  17. Huang, C.Y., Kuo, S.Y., Lyu, M.R.: A framework for modeling software reliability considering various testing efforts and fault detection rates. IEEE Trans. Reliab. (2001)

    Google Scholar 

  18. Software Reliability Growth Modeling Using the Standard and Modified Gompertz Models. https://www.weibull.com/hotwire/issue84/relbasics84.htm. Last accessed 2021/04/25

  19. Ohishi, K., Okamura, H., Dohi, T.: Gompertz software reliability model: Estimation algorithm and empirical validation. J. Syst. Softw. 82(3), 535–543 (2009)

    Google Scholar 

  20. Huang, C.Y., Lyu, M.R., Kuo, S.Y.: A unified scheme of some non-homogenous Poisson process models for software reliability estimation. IEEE Trans. Softw. Eng. 29(3), 261–269 (2003)

    Google Scholar 

  21. Kapur, P.K., Bhushan, S., Younes, S.: An exponential SRGM with a bound on the number of failures. Microelectron. Reliab. 33(9), 1245–1249 (1993)

    Google Scholar 

  22. Pham, H.: A generalized fault-detection software reliability model subject to random operating environments. Vietnam J. Comput. Sci. 3, 145–150 (2016)

    Google Scholar 

  23. Zhu, M., Pham, H.: A software reliability model with time-dependent fault detection and fault removal. In: Vietnam J. Comput. Sci. 3, 71–79 (2016)

    Google Scholar 

  24. Pham, H.: A new software reliability model with Vtub-shaped fault-detection rate and the uncertainty of operating environments. Optimization 63(10), 1481–1490 (2014)

    Google Scholar 

  25. Song, K., Chang, I., Pham, H.: A software reliability model with a weibull fault detection rate function subject to operating environments. Appl. Sci. 7(10), 983 (2017)

    Google Scholar 

  26. Pham, H.: System software reliability. Springer London (2006)

    Google Scholar 

  27. Kapur, P.K., Pham, H., Anand, S., Yadav, K.: A unified approach for developing software reliability growth models in the presence of imperfect debugging and error generation. IEEE Trans. Reliab. 60(1), 331–340 (2011)

    Google Scholar 

  28. Zhang, X., Pham, H.: An analysis of factors affecting software reliability. J. Syst. Softw. 50(1), 43–56 (2000)

    Google Scholar 

  29. Cao, P., Tang, G., Zhang, Y., Luo, Y.: Qualitative evaluation of software reliability considering many uncertain factors. In: Cao, B.Y., Ma, S.Q., Cao, H. (eds.) Ecosystem Assessment and Fuzzy Systems Management, vol. 254. AISC Series, Springer, Berlin (2014)

    Google Scholar 

  30. Li, Q., Pham, H.: A testing-coverage software reliability model considering fault removal efficiency and error generation. PLoS ONE 12(7), e0181524 (2017)

    Google Scholar 

  31. Honda, K.., Washizaki, H., Fukazawa, Y.: Generalized software reliability model considering uncertainty and dynamics: model and applications. Int. J. Softw. Eng. Knowl. Eng. 27(6) (2017)

    Google Scholar 

  32. Li, F., Yi, Z.: A new software reliability growth model: multigeneration faults and a power-law testing-effort function. Math. Probl. Eng. Article ID 9276093 (2016)

    Google Scholar 

  33. Xie, M.: Software Reliability Modeling. World Scientific Publishing (1991)

    Google Scholar 

  34. Yamada, S., Tokuno, K., Osaki, S.: Imperfect debugging models with fault introduction rate for software reliability assessment. Int. J. Syst. Sci. 23(12) (1992)

    Google Scholar 

  35. Pham, H., Nordmann, L., Zhang, X.: A general imperfect software debugging model with s-shaped fault detection rate. IEEE Trans. Reliab. 48, 169–175 (1999)

    Google Scholar 

  36. Anjum, M., Haque M.A., Ahmad, N.: Analysis and ranking of software reliability models based on weighted criteria value. Int. J. Inf. Technol. Comput. Sci. 5(2), 1–14 (2013)

    Google Scholar 

  37. Sharma, K., Garg, R., Nagpal, C.K., Garg, R.K.: Selection of optimal software reliability growth models using a distance based approach. IEEE Trans. Reliab. 59(2), 266–276 (2010)

    Google Scholar 

  38. Huang, C.Y., Lo, J.H., Kuo, S.Y., Lyu, M.R.: Software reliability modeling and cost estimation incorporating testing-effort and efficiency. In: 10th International Symposium on Software Reliability Engineering, Washington, USA (1999)

    Google Scholar 

  39. Wood, A.: Predicting software reliability. Computer 29(11), 69–77 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Asraful Haque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Asraful Haque, M., Ahmad, N. (2022). Modified Goel-Okumoto Software Reliability Model Considering Uncertainty Parameter. In: Sahni, M., Merigó, J.M., Sahni, R., Verma, R. (eds) Mathematical Modeling, Computational Intelligence Techniques and Renewable Energy. Advances in Intelligent Systems and Computing, vol 1405. Springer, Singapore. https://doi.org/10.1007/978-981-16-5952-2_32

Download citation

Publish with us

Policies and ethics