Skip to main content

Boundary Polygonization

  • Chapter
  • First Online:
Image Processing with Cellular Topology
  • 191 Accesses

Abstract

This chapter describes two methods of encoding a boundary as a sequence of straight-line segments: the first method encodes a boundary as a sequence of short straight-line segments being digital images of analog straight-line segments. The second method calculates for each boundary component a polygon approximating the boundary with an assigned precision. Both methods make a geometrical analysis of the boundary possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Debled-Rennesson I, Reveillès J-P. A linear algorithm for segmentation of digital curves. Int J Pattern Recognit Artific Intell. 1995;9:635–62.

    Article  Google Scholar 

  2. Debled-Rennesson I. Etude et reconnaissance des droites et plans discrets. PhD thesis, Université Louis Pasteur, Strasbourg. 1995.

    Google Scholar 

  3. Anderson TA, Kim CE. Representation of digital line segments and their preimages. Comp Vis Graph Image Process. 1985;30:279–88.

    Article  Google Scholar 

  4. Freeman H. Computer processing of line-drawing images. Comput Surv. 1974;6:57–97.

    Article  Google Scholar 

  5. Reveilles JP. Géométrie discrète, calcul en nombres entier et algorithmique. Thèse d’état, Université Louis Pasteur, Strasbourg. 1991.

    Google Scholar 

  6. Rosenfeld A, Kak AC. Digital picture processing. Academic; 1976.

    MATH  Google Scholar 

  7. Reveilles JP. Structure des Droit Discretes, Journée mathématique et informatique. 1989.

    Google Scholar 

  8. Freeman H. On the encoding of arbitrary geometric configurations. IRE TransElectronComput. 1961;EC-10:260–8.

    MathSciNet  Google Scholar 

  9. Kovalevsky V. Application of digital straight segments to economical image encoding. In: Ahronovitz E, Fiorio C, editors. DGCI, LNSC; 1568. p. 118–35.

    Google Scholar 

  10. Klette R, Kovalevsky V, Yip B. On length estimation of digital curves. In: Part of the SPIE conference on vision geometry VIII, Denver/Colorado, vol. 3811. SPIE; 1999. p. 117–28.

    Google Scholar 

  11. Williams C. An efficient algorithm for the piecewise linear approximation of planar curves. Comp Graph Image Process. 1978;8:286–93.

    Article  Google Scholar 

  12. Wadell H. Volume, Shape and roundness of quartz particles. J Geol. 1935;43(3):250–80. https://doi.org/10.1086/624298.

    Article  Google Scholar 

  13. Berger M. Geometry revealed: a Jacob’s Ladder to modern higher geometry. Springer; 2010. p. 295–6. ISBN 9783540709978

    Book  Google Scholar 

  14. Graham RL. An efficient algorithm for determining the convex hull of a finite planar set (PDF). Inf Process Lett. 1972;1(4):132–3. https://doi.org/10.1016/0020-0190(72)90045-2.

    Article  MATH  Google Scholar 

  15. Kovalevsky V. Geometry of locally finite spaces. Editing House Dr. Baerbel Kovalevski; 2008. ISBN 978-3-981 2252-0-4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kovalevsky, V. (2021). Boundary Polygonization. In: Image Processing with Cellular Topology. Springer, Singapore. https://doi.org/10.1007/978-981-16-5772-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5772-6_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5771-9

  • Online ISBN: 978-981-16-5772-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics