Skip to main content

Interplay of Brassinosteroids and Auxin for Understanding of Signaling Pathway

  • Chapter
  • First Online:
Brassinosteroids Signalling
  • 359 Accesses

Abstract

Plant hormones play a vital role in the regulation of growth and development of plants, besides this, they also provide tolerance under different biotic and abiotic stresses. In plants, brassinosteroids (BRs) are steroidal hormone known to regulate many physiological, biochemical, and developmental processes. Recent studies showed that BRs can interplay with other plant hormones such as auxin (AUX), cytokinins (CKs), abscisic acid (ABA), ethylene (ETH), and gibberellic acid (GA) to regulate a range of growth and developmental processes in plants. Auxin and BRs are of two different groups of plant hormones which regulate many processes from seed germination to the fruit development independently. But in recent years, several studies have revealed a common link between these two hormones in the regulation of plant developmental processes. Current advancement in molecular tools has provided a better understanding toward the mechanism of signal transduction process of interplay of BRs and auxin. So, in this chapter, we discuss about the physiological responses of BRs and auxin interplay and its detail mechanism of signal transduction pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahammed, G. J., Xia, X., Li, X., Shi, K., Yu, J., & Zhou, Y. (2015). Role of brassinosteroid in plant adaptation to abiotic stresses and its interplay with other hormones. Current Protein & Peptide Science, 16, 462–473.

    Article  CAS  Google Scholar 

  • Ahanger, M. A., Ashraf, M., Bajguz, A., & Ahmad, P. (2018). Brassinosteroids regulate growth in plants under stressful environments and crosstalk with other potential phytohormones. Journal of Plant Growth Regulation, 37(4), 1007–1024.

    Article  CAS  Google Scholar 

  • Ahmad, F., Singh, A., & Kamal, A. (2018). Crosstalk of brassinosteroids with other phytohormones under various abiotic stresses. Journal of Applied Biology and Biotechnology, 6(1), 56–62.

    CAS  Google Scholar 

  • Ali, B., Hayat, S., & Ahmad, A. (2007). 28-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum L.). Environmental and Experimental Botany, 59, 217–223.

    Article  CAS  Google Scholar 

  • Ali, B., Hasan, S. A., Hayat, S., Hayat, Q., Yadav, S., & Fariduddin, Q. (2008). A role for brassinosteroids in the amelioration of aluminum stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environmental and Experimental Botany, 62, 153–159.

    Article  CAS  Google Scholar 

  • Badescu, G. O., & Napier, R. M. (2006). Receptors for auxin: Will it all end in TIRs? Trends in Plant Science, 11, 217–223.

    Article  CAS  PubMed  Google Scholar 

  • Bao, F., Shen, J., Brady, S. R., Muday, G. K., Asami, T., & Yang, Z. (2004). Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiology, 134, 1624–1631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbez, E., Kubes, M., Rolcik, J., Beziat, C., Pencik, A., Wang, B., Rosquete, M. R., Zhu, J., Dobrev, P. I., Lee, Y., et al. (2012). A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature, 485, 119–122.

    Article  CAS  PubMed  Google Scholar 

  • Bashri, G., & Prasad, S. M. (2015). Indole acetic acid modulates changes in growth, chlorophyll a fluorescence and antioxidant potential of Trigonella foenum-graecum L. grown under cadmium stress. Acta Physiologiae Plantarum, 37(3), 49.

    Article  CAS  Google Scholar 

  • Bashri, G., & Prasad, S. M. (2016). Exogenous IAA differentially affects growth, oxidative stress and antioxidants system in Cd stressed Trigonella foenum-graecum L. seedlings: Toxicity alleviation by up-regulation of ascorbate- glutathione cycle. Ecotoxicology and Environmental Safety, 132, 329–338.

    Article  CAS  PubMed  Google Scholar 

  • Benkova, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertova, D., Jurgens, G., et al. (2003). Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 115, 591–602.

    Article  CAS  PubMed  Google Scholar 

  • Beziat, C., Barbez, E., Feraru, M. I., Lucyshyn, D., & Kleine-Vehn, J. (2017). Light triggers PILS-dependent reduction in nuclear auxin signalling for growth transition. Nature Plants, 3, 17105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhalerao, R. P., Eklof, J., Ljung, K., Marchant, A., Bennett, M., & Sandberg, G. (2002). Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. The Plant Journal, 29, 325–332.

    Article  CAS  PubMed  Google Scholar 

  • Casimiro, I., Marchant, A., Bhalerao, R. P., Beeckman, T., Dhooge, S., Swarup, R., et al. (2001). Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell, 13, 843–852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaiwanon, J., & Wang, Z. Y. (2015). Spatiotemporal brassinosteroid signaling and antagonism with auxin pattern stem cell dynamics in Arabidopsis roots. Current Biology, 25(8), 1031–1042.

    Article  CAS  PubMed  Google Scholar 

  • Cho, H., Ryu, H., Rho, S., Hill, K., Smith, S., Audenaert, D., Park, J., Han, S., Beeckman, T., Bennett, M. J., Hwang, D., Smet, I. D., & Hwang, I. (2014a). A secreted peptide acts on BIN2-mediated phosphorylation of ARFs to potentiate auxin response during lateral root development. Nature Cell Biology, 6(1), 21–23.

    Google Scholar 

  • Cho, H., Ryu, H., Rho, S., Hill, K., Smith, S., Audenaert, D., Park, J., Han, S., Beeckman, T., Bennett, M. J., et al. (2014b). A secreted peptide acts on BIN2-mediated phosphorylation of ARFs to potentiate auxin response during lateral root development. Nature Cell Biology, 16, 66–76.

    Article  CAS  PubMed  Google Scholar 

  • Choudhary, S. P., Yu, Y. Q., Yamaguchi-Shinozaki, K., Shinozaki, K., & Tran, L. S. P. (2012). Benefits of brassinosteroid cross talk. Trends in Plant Science, 17, 594e605.

    Article  CAS  Google Scholar 

  • Chung, Y., Maharjan, P. M., Lee, O., Fujioka, S., Jang, S., Kim, B., et al. (2011). Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis. The Plant Journal, 66, 564–578.

    Article  CAS  PubMed  Google Scholar 

  • Clouse, S. D. (2011). Brassinosteroid signal transduction: From receptor kinase activation to transcriptional networks regulating plant development. Plant Cell, 23, 1219–1230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clouse, S. D. (2015). A history of brassinosteroid research from 1970 through 2005: Thirty-five years of phytochemistry, physiology, genes, and mutants. Journal of Plant Growth Regulation, 34, 828–844.

    Article  CAS  Google Scholar 

  • Dharmasiri, N., Dharmasiri, S., Jones, A. M., & Estelle, M. (2003). Auxin action in a cell-free system. Current Biology, 13, 1418–1422.

    Article  CAS  PubMed  Google Scholar 

  • Dharmasiri, N., Dharmasiri, S., & Estelle, M. (2005). The F-box protein TIR1 is an auxin receptor. Nature, 435, 441–445.

    Article  CAS  PubMed  Google Scholar 

  • Du, H., Liu, H., & Xiong, L. (2013). Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Frontiers in Plant Science, 4, 397.

    Article  PubMed  PubMed Central  Google Scholar 

  • Durbak, A., Yao, H., & Mcsteen, P. (2012). Hormone signaling in plant development. Current Opinion in Plant Biology, 15, 92–96.

    Article  CAS  PubMed  Google Scholar 

  • Fariduddin, Q., Yusuf, M., Ahmad, I., & Ahmad, A. (2014). Brassinosteroids and their role in response of plants to abiotic stress. Biologia Plantarum, 58, 9–17.

    Article  CAS  Google Scholar 

  • Feraru, E., Vosolsobe, S., Feraru, M. I., Petrášek, J., & Kleine-Vehn, J. (2012). Evolution and structural diversification of PILS putative auxin carriers in plants. Frontiers in Plant Science, 3, 227.

    PubMed  PubMed Central  Google Scholar 

  • Feraru, E., et al. (2019). PILS6 is a temperature-sensitive regulator of nuclear auxin input and organ growth in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 116(9), 3893–3898.

    Article  CAS  Google Scholar 

  • Goda, H., Sawa, S., Asami, T., Fujioka, S., Shimada, Y., & Yoshida, S. (2004). Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiology, 134, 1555–1573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grauwe, L. D., Vandenbussche, F., Tietz, O., Palme, K., & Straeten, D. V. D. (2005). Auxin, ethylene and brassinosteroids: Tripartite control of growth in the Arabidopsis hypocotyl. Plant & Cell Physiology, 46, 827–836.

    Article  CAS  Google Scholar 

  • Gray, W. M., Ostin, A., Sandberg, G., Romano, C. P., & Estelle, M. (1998). High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 95, 7197–7202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray, W. M., Kepinski, S., Rouse, D., Leyser, O., & Estelle, M. (2001). Auxin regulates SCF (TIR1)-dependent degradation of AUX/IAA proteins. Nature, 414, 271–276.

    Article  CAS  PubMed  Google Scholar 

  • Grove, M. D. S., Rohwedder, G. F., Mandava, W. K., Worley, N., Warthen, J. F., Steffens, J. D., Flippenanderson, G. L., & Cook, J. L. (1979). Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature, 281, 216–217.

    Article  CAS  Google Scholar 

  • Gruszka, D., Janeczko, A., Dziurka, M., Pociecha, E., Oklestkova, J., & Szare-jko, I. (2016). Barley brassinosteroid mutants provide an insight into phytohormonal homeostasis in plant reaction to drought stress. Frontiers in Plant Science, 7, 1824.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guilfoyle, T. J., & Hagen, G. (2007). Auxin response factors. Current Opinion in Plant Biology, 10, 453–460.

    Article  CAS  PubMed  Google Scholar 

  • Hacham, Y., Holland, N., Butterfield, C., Ubeda-Tomas, S., Bennett, M. J., Chory, J., et al. (2011). Brassinosteroid perception in the epidermis controls root meristem size. Development, 138, 839–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hacham, Y., Sela, A., Friedlander, L., & Savaldi-Goldstein, S. (2012). BRI1 activity in the root meristem involves post-transcriptional regulation of PIN auxin efflux carriers. Plant Signaling & Behavior, 7(1), 68–70.

    Article  CAS  Google Scholar 

  • Halliday, K. J., & Fankhhauser, C. (2003). Phytochrome-hormonal signalling networks. The New Phytologist, 157, 449–463.

    Article  CAS  PubMed  Google Scholar 

  • Hao, J., Yin, Y., & Fei, S. Z. (2013). Brassinosteroid signaling network: Implications on yield and stress tolerance. Plant Cell Reports, 32, 1017–1030.

    Article  CAS  PubMed  Google Scholar 

  • Hardtke, C. S., Dorcey, E., Osmont, K. S., & Sibout, R. (2007). Phytohormone collaboration: Zooming in on auxin–brassinosteroid interactions. Trends in Cell Biology, 17, 485–492.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, B. R., & Masson, P. H. (2008). ARL2, ARG1 and PIN3 define a gravity signal transduction pathway in root statocytes. The Plant Journal, 53, 380–392.

    Article  CAS  PubMed  Google Scholar 

  • Hayat, S., Maheshwari, P., Wani, A. S., Irfan, M., Alyemeni, M. N., & Ahmad, A. (2012). Comparative effect of 28 homobrassinolide and salicylic acid in the amelioration of NaCl stress in Brassica juncea L. Plant Physiology and Biochemistry, 53, 61–68.

    Article  CAS  PubMed  Google Scholar 

  • He, J. X., Gendron, J. M., Yang, Y., Li, J., & Wang, Z. Y. (2002). The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 99, 10185–10190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hothorn, M., Belkhadir, Y., Dreux, M., Dabi, T., Noel, J. P., Wilson, I. A., & Chory, J. (2011). Structural basis of steroid hormone perception by the receptor kinase BRI1. Nature, 474, 467–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibanes, M., Fabregas, N., Chory, J., & Cano-Delgado, A. I. (2009). Brassinosteroid signaling and auxin transport are required to establish the periodic pattern of Arabidopsis shoot vascular bundles. Proceedings of the National Academy of Sciences of the United States of America, 106, 13630–13635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibañez, C., Delker, C., Martinez, C., Bürstenbinder, K., Janitza, P., Lippmann, R., Ludwig, W., Sun, H., James, G. V., Klecker, M., & Grossjohann, A. (2018). Brassinosteroids dominate hormonal regulation of plant thermo-morphogenesis via BZR1. Current Biology, 28(2), 303–310.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, H., Shui, Z., Xu, L., Yang, Y., Li, Y., Yuan, X., Shang, J., Asghar, M. A., Wu, X., Yu, L., & Liu, C. (2020). Gibberellins modulate shade-induced soybean hypocotyl elongation downstream of the mutual promotion of auxin and brassinosteroids. Plant Physiology and Biochemistry. https://doi.org/10.1016/j.plaphy.2020.02.042

  • Keuskamp, D. H., Sasidharan, R., Vos, I., Peeters, A. J. M., Voesenek, L. A. C. J., & Pierik, R. (2011). Blue-light-mediated shade avoidance requires combined auxin and brassinosteroid action in Arabidopsis seedlings. The Plant Journal, 67, 208–217.

    Article  CAS  PubMed  Google Scholar 

  • Kim, T. W., & Wang, Z. Y. (2010). Brassinosteroid signal transduction from receptor kinases to transcription factors. Annual Review of Plant Biology, 61, 681–704.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H. B., Kwon, M., Ryu, H., Fujioka, S., Takatsuto, S., Yoshida, S., An, C. S., Lee, I., Hwang, I., & Choe, S. (2006). The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiology, 140, 548–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, T. W., Guan, S., Sun, Y., Deng, Z., Tang, W., Shang, J. X., Burlingame, A. L., & Wang, Z. Y. (2009). Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nature Cell Biology, 11, 1254–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, T. W., Guan, S., Burlingame, A. L., & Wang, Z. Y. (2011). The CDG1 kinase mediates brassinosteroid signal transduction from BRI1receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2. Molecular Cell, 43, 561–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita, T., Cano-Delgado, A., Seto, H., Hiranuma, S., Fujioka, S., Yoshida, S., & Chory, J. (2005). Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature, 433, 167–171.

    Article  CAS  PubMed  Google Scholar 

  • Kissoudis, C., van de Wiel, C., Visser, R. G., & van der Linden, G. (2014). Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Frontiers in Plant Science, 5, 207.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kozuka, T., Kobayashi, J., Horiguchi, G., Demura, T., Sakakibara, H., Tsukaya, H., & Nagatani, A. (2010). Involvement of auxin and brassinosteroid in the regulation of petiole elongation under the shade. Plant Physiology, 153(4), 1608–1618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krumova, S., Zhiponova, M., Dankov, K., Velikova, V., Balashev, K., Andreeva, T., et al. (2013). Brassinosteroids regulate the thylakoid membrane architecture and the photosystem II function. Journal of Photochemistry and Photobiology B: Biology, 126, 97–104.

    Article  CAS  Google Scholar 

  • Lanza, M., Garcia-Ponce, B., Castrillo, G., Catarecha, P., Sauer, M., Rodriguez-Serrano, M., Paez-Garcia, A., Sanchez-Bermejo, E., Leo del Puerto, Y., Mohan, T. C., et al. (2012). Role of actin cytoskeleton in brassinosteroid signaling and in its integration with the auxin response in plants. Developmental Cell, 22, 1275–1285.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., & Chory, J. (1997). A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell, 90, 929–938.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., & Nam, K. H. (2002). Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science, 295, 1299–1301.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., Xu, J., Xu, Z. H., & Xue, H. W. (2005). Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. Plant Cell, 17, 2738–2753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H., Teng, R. M., Liu, J. X., Yang, R. Y., Yang, Y. Z., Lin, S. J., Han, M. H., Liu, J. Y., & Zhuang, J. (2019). Identification and analysis of genes involved in auxin, abscisic acid, gibberellin, and brassinosteroid metabolisms under drought stress in tender shoots of tea plants. DNA and Cell Biology, 38(11), 1292–1302.

    Article  CAS  PubMed  Google Scholar 

  • Li, T., Kang, X., Lei, W., Yao, X., Zou, L., Zhang, D., & Lin, H. (2020). SHY2 as a node in the regulation of root meristem development by auxin, brassinosteroids, and cytokinin. Journal of Integrative Plant Biology. https://doi.org/10.1111/jipb.12931

  • Liscum, E., & Reed, J. W. (2002). Genetics of Aux/IAA and ARF action in plant growth and development. Plant Molecular Biology, 49, 387–400.

    Article  CAS  PubMed  Google Scholar 

  • Ljung, K., Hull, A. K., Celenza, J., Yamada, M., Estelle, M., Normanly, J., & Sandberg, G. (2005). Sites and regulation of auxin biosynthesis in Arabidopsis roots. The Plant Cell, 17, 1090–1104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maharjan, P. M., & Choe, S. (2011). High temperature stimulates DWARF4 (DWF4) expression to increase hypocotyl elongation in arabidopsis. Journal of Plant Biology, 54(6), 425–429.

    Article  CAS  Google Scholar 

  • Maharjan, P. M., Schulz, B., & Choe, S. (2011). BIN2/DWF12 antagonistically transduces brassinosteroid and auxin signals in the roots of Arabidopsis. Journal of Plant Biology, 54(2), 126–134.

    Article  CAS  Google Scholar 

  • Mandava, N. B. (1988). Plant growth-promoting brassinosteroids. Annual Review of Plant Physiology and Plant Molecular Biology, 39, 23–52.

    Article  CAS  Google Scholar 

  • Mashiguchi, K., et al. (2011). The main auxin biosynthesis pathway in Arabidopsis. Proceedings of the National Academy of Sciences, 108(45), 18512–18517.

    Article  CAS  Google Scholar 

  • Mora-Garcia, S., Vert, G., Yin, Y., Cano-Delgado, A., Cheong, H., & Chory, J. (2004). Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes & Development, 18, 448–460.

    Article  CAS  Google Scholar 

  • Mouchel, C. F., Osmont, K. S., Hardtke, C. S., et al. (2006). BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth. Nature, 443, 458–461.

    Article  CAS  PubMed  Google Scholar 

  • Mravec, J., Skůpa, P., Bailly, A., Hoyerová, K., Krecek, P., Bielach, A., Petrásek, J., Zhang, J., Gaykova, V., Stierhof, Y. D., et al. (2009). Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature, 459, 1136–1140.

    Article  CAS  PubMed  Google Scholar 

  • Nemhauser, J. L., Maloof, J. N., & Chory, J. (2003). Building integrated models of plant growth and development. Plant Physiology, 132, 436–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemhauser, J. L., Mockler, T. C., & Chory, J. (2004). Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biology, 2, 258.

    Article  CAS  Google Scholar 

  • Oh, E., Zhu, J. Y., Bai, M. Y., Arenhart, R. A., Sun, Y., & Wang, Z. Y. (2014). Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. eLife, 3, e03031.

    Article  PubMed Central  CAS  Google Scholar 

  • Péret, B., Swarup, K., Ferguson, A., Seth, M., Yang, Y., Dhondt, S., James, N., Casimiro, I., Perry, P., Syed, A., et al. (2012). AUX/LAX genes encode a family of auxin influx transporters that perform distinct functions during Arabidopsis development. Plant Cell, 24, 2874–2885.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perez-Perez, J. M., Ponce, M. R., & Micol, J. L. (2002). The UCU1 Arabidopsis gene encodes a SHAGGY/GSK3-like kinase required for cell expansion along the proximodistal axis. Developmental Biology, 242, 161–173.

    Article  CAS  PubMed  Google Scholar 

  • Quint, M., Ito, H., Zhang, W., & Gray, W. M. (2005). Characterization of a novel temperature-sensitive allele of the CUL1/AXR6 subunit of the SCF ubiquitin ligase. Plant Journal, 43, 371–383.

    Article  CAS  Google Scholar 

  • Rana, S., & Hardtke, C. S. (2020). Brassinosteroids and the intracellular auxin shuttle. Current Biology, 30(9), 407–409.

    Article  CAS  Google Scholar 

  • Retzer, K., Akhmanova, M., Konstantinova, N., Malínská, K., Leitner, J., Petrášek, J., & Luschnig, C. (2019). Brassinosteroid signaling delimits root gravitropism via sorting of the Arabidopsis PIN2 auxin transporter. Nature Communications, 10(1), 1–5.

    Article  CAS  Google Scholar 

  • Ruegger, M., Dewey, E., Gray, W. M., Hobbie, L., Turner, J., & Estelle, M. (1998). The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. Genes & Development, 12, 198–207.

    Article  CAS  Google Scholar 

  • Saini, S., Sharma, I., Kaur, N., & Pati, P. K. (2013). Auxin: A master regulator in plant root development. Plant Cell Reports, 32, 741–757.

    Article  CAS  PubMed  Google Scholar 

  • Saini, S., Sharma, I., & Pati, P. K. (2015). Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and cross talks. Frontiers in Plant Science, 6, 950.

    Article  PubMed  PubMed Central  Google Scholar 

  • Santner, A., & Estelle, M. (2009). Recent advances and emerging trends in plant hormone signaling. Nature, 459, 1071–1078.

    Article  CAS  PubMed  Google Scholar 

  • She, J., Han, Z., Kim, T. W., Wang, J., Cheng, W., Chang, J., Shi, S., Wang, J., Yang, M., Wang, Z. Y., & Chai, J. (2011). Structural insight into brassinosteroid perception by BRI1. Nature, 474, 472–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibasaki, K., Uemura, M., Tsurumi, S., & Rahman, A. (2009). Auxin response in Arabidopsis under cold stress: Underlying molecular mechanisms. The Plant Cell, 21, 3823–3838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, Y., Wang, L., & Xiong, L. (2009). Comprehensive expression profiling analysis of OsIAA gene family in developmental processes and in response to phytohormone and stress treatments. Planta, 229, 577–591.

    Article  CAS  PubMed  Google Scholar 

  • Sukumar, P., Edwards, K. S., Rahman, A., Delong, A., & Muday, G. K. (2009). PINOID kinase regulates root gravitropism through modulation of PIN2-dependent basipetal auxin transport in Arabidopsis. Plant Physiology, 150, 722–735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Y., Fan, X. Y., Cao, D. M., Tang, W., et al. (2010). Integration of brassinosteroids signal transduction with the transcription network for plant growth regulation in Arabidopsis. Developmental Cell, 19, 765–777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, L., Feraru, E., Feraru, M. I., Waidmann, S., Wang, W., Passaia, G., Wang, Z. Y., Wabnik, K., & Kleine-Vehn, J. (2020). PIN-LIKES coordinate brassinosteroid signaling with nuclear auxin input in Arabidopsis thaliana. Current Biology, 30(9), 1579–1588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka, K., Asami, T., Yoshida, S., Nakamura, Y., Matsuo, T., & Okamoto, S. (2005). Brassinosteroid homeostasis in Arabidopsis is ensured by feedback expressions of multiple genes involved in its metabolism. Plant Physiology, 138, 1117–1125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, W., Yuan, M., Wang, R., Yang, Y., Wang, C., Oses-Prieto, J. A., Kim, T. W., Zhou, H. W., Deng, Z., Gampala, S. S., Gendron, J. M., Jonassen, E. M., Lillo, C., DeLong, A., Burlingame, A. L., Sun, Y., & Wang, Z. Y. (2011). PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nature Cell Biology, 13, 124–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, H., Lv, B., Ding, T., Bai, M., & Ding, Z. (2018). Auxin-BR interaction regulates plant growth and development. Frontiers in Plant Science, 8, 2256.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tromas, A., Paque, S., Stierlé, V., Quettier, A. L., Muller, P., Lechner, E., Genschik, P., & Perrot-Rechenmann, C. (2013). Auxin-binding protein 1 is a negative regulator of the SCF(TIR1/AFB) pathway. Nature Communications, 4, 2496.

    Article  PubMed  CAS  Google Scholar 

  • Vert, G., Walcher, C. L., Chory, J., & Nemhauser, J. L. (2008). Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proceedings of the National Academy of Sciences of the United States of America, 105, 9829–9834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Z. Y., Seto, H., Fujioka, S., Yoshida, S., & Chory, J. (2001). BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature, 410, 380–383.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z. Y., Nakano, T., Gendron, J., He, J., Chen, M., Vafeados, D., Yang, Y., Fujioka, S., Yoshida, S., Asami, T., & Chory, J. (2002). Nuclear localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Developmental Cell, 2, 505–513.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z. Y., Bai, M. Y., Oh, E., & Zhu, J. Y. (2012). Brassinosteroid signaling network and regulation of photo-morphogenesis. Annual Review of Genetics, 46, 701–724.

    Article  CAS  PubMed  Google Scholar 

  • Weijers, D., & Friml, J. (2009). Snapshot: Auxin signaling and transport. Cell, 136(6), 1172–1172.

    Article  CAS  PubMed  Google Scholar 

  • WiÅ›niewska, J., et al. (2006). Polar PIN localization directs auxin flow in plants. Science, 312(5775), 883–883.

    Article  PubMed  Google Scholar 

  • Yamamoto, Y., Kamiya, N., Morinaka, Y., Matsuoka, M., & Sazuka, T. (2007). Auxin biosynthesis by the YUCCA genes in rice. Plant Physiology, 143, 1362–1371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Y. N., Qi, M., & Mei, C. S. (2004). Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. The Plant Journal, 40, 909–919.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Nan, Z., Zhao, Z., Wang, S., Wang, Z., & Wang, X. (2011). Chemical fractionations and bioavailability of cadmium and zinc to cole (Brassica campestris L.) grown in the multi-metals contaminated oasis soil, northwest of China. Journal of Environmental Sciences, 23, 275–281.

    Article  CAS  Google Scholar 

  • Yin, Y., Wang, Z. Y., Mora-Garcia, S., Li, J., Yoshida, S., Asami, T., & Chory, J. (2002). BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell, 109, 181–191.

    Article  CAS  PubMed  Google Scholar 

  • Yu, X., Li, L., Zola, J., et al. (2011). A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. The Plant Journal, 65, 634–646.

    Article  CAS  PubMed  Google Scholar 

  • Yusuf, M., Khan, T. A., & Fariduddin, Q. (2017). Brassinosteroids: Physiological roles and its signalling in plants. In Stress signaling in plants: Genomics and proteomics perspective (Vol. 2, pp. 241–260). Springer.

    Chapter  Google Scholar 

  • Zhang, S., Wang, S., Xu, Y., Yu, C., Shen, C., Qian, Q., et al. (2014). The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1. Plant, Cell & Environment, 38, 638–654.

    Article  CAS  Google Scholar 

  • Zhao, Y., Hull, A. K., Gupta, N. R., Goss, K. A., Alonso, J., et al. (2002). Trp-dependent auxin biosynthesis in Arabidopsis: Involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes & Development, 16, 3100–3112.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bashri, G., Fatima, A., Singh, S., Prasad, S.M. (2022). Interplay of Brassinosteroids and Auxin for Understanding of Signaling Pathway. In: Khan, M.T.A., Yusuf, M., Qazi, F., Ahmad, A. (eds) Brassinosteroids Signalling. Springer, Singapore. https://doi.org/10.1007/978-981-16-5743-6_8

Download citation

Publish with us

Policies and ethics