Skip to main content

Interaction Between Brassinosteroids and Hydrogen Peroxide Networking Signal Molecules in Plants

  • Chapter
  • First Online:
Brassinosteroids Signalling

Abstract

Brassinosteroids (BRs) and hydrogen peroxide (H2O2) are considered as profound signaling molecules that govern a diverse range of fundamental physiological and metabolic processes in plants from germination to senescence as well as mechanisms for adaptation to environmental changes. The physiology of H2O2 typically contains numerous possible mechanisms for maintaining the cellular processes of BR, which are implicated in important plant functions and stress responses. This chapter summarizes the overview of current understanding of the signaling of BRs and H2O2 and their interplay in modulating plant growth and development, in particular seed germination, root growth, stomatal movement, leaf senescence and fruit ripening. As well as providing an overview of their interaction under diverse abiotic stress factors. More importantly, gene expression by mitogen-activated protein kinases (MPKs), BRASSINAZOLE RESISTANT 1 (BZR1), BRI1-EMS SUPPRESSOR 1 (BES1), SlNAC2 and other transcription factors which modulate abiotic stresses in plants has also been sectioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Saikhan, M. S., & Shalaby, T. A. (2019). Effect of hydrogen peroxide (H2O2) treatment on physicochemical characteristics of tomato fruits during post-harvest storage. Australian Journal of Crop Science, 13(5), 798.

    Article  CAS  Google Scholar 

  • An, Y., Liu, L., Chen, L., & Wang, L. (2016). ALA inhibits ABA-induced stomatal closure via reducing H2O2 and Ca2+ levels in guard cells. Frontiers in Plant Science, 7, 482.

    PubMed  PubMed Central  Google Scholar 

  • Antunes, W. C., de MenezesDaloso, D., Pinheiro, D. P., Williams, T. C. R., & Loureiro, M. E. (2017). Guard cell-specific down-regulation of the sucrose transporter SUT1 leads to improved water use efficiency and reveals the interplay between carbohydrate metabolism and K+ accumulation in the regulation of stomatal opening. Environmental and Experimental Botany, 135, 73–85.

    Article  CAS  Google Scholar 

  • Babalık, Z., Demirci, T., Aşcı, Ö. A., & Baydar, N. G. (2020). Brassinosteroids modify yield, quality, and antioxidant components in grapes (Vitis vinifera cv. Alphonse Lavallée). Journal of Plant Growth Regulation, 1–10.

    Google Scholar 

  • Bayoumi, Y. A. (2008). Improvement of postharvest keeping quality of white pepper fruits (Capsicum annuum, L.) by hydrogen peroxide treatment under storage conditions. Acta Biologica Szegediensis, 52(1), 7–15.

    Google Scholar 

  • Belkhadir, Y., & Chory, J. (2006). Brassinosteroid signaling: A paradigm for steroid hormone signaling from the cell surface. Science, 314, 1410–1411.

    Article  CAS  PubMed  Google Scholar 

  • Besseau, S., Li, J., & Palva, E. T. (2012). WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. Journal of Experimental Botany, 63(7), 2667–2679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borgohain, P., Saha, B., Agrahari, R., Chowardhara, B., Sahoo, S., van der Vyver, C., & Panda, S. K. (2019). SlNAC2 overexpression in Arabidopsis results in enhanced abiotic stress tolerance with alteration in glutathione metabolism. Protoplasma, 256(4), 1065–1077.

    Article  CAS  PubMed  Google Scholar 

  • Camejo, D., Guzmán-Cedeño, Á., & Moreno, A. (2016). Reactive oxygen species, essential molecules, during plant–pathogen interactions. Plant Physiology and Biochemistry, 103, 10–23.

    Article  CAS  PubMed  Google Scholar 

  • Capone, R., Tiwari, B. S., & Levine, A. (2004). Rapid transmission of oxidative and nitrosative stress signals from roots to shoots in Arabidopsis. Plant Physiology and Biochemistry, 42(5), 425–428.

    Article  CAS  PubMed  Google Scholar 

  • Černý, M., Habánová, H., Berka, M., Luklova, M., & Brzobohatý, B. (2018). Hydrogen peroxide: Its role in plant biology and crosstalk with signalling networks. International Journal of Molecular Sciences, 19(9), 2812.

    Article  PubMed Central  CAS  Google Scholar 

  • Chaki, M., Alvarez de Morales, P., Ruiz, C., Begara-Morales, J. C., Barroso, J. B., Corpas, F. J., & Palma, J. M. (2015). Ripening of pepper (Capsicum annuum) fruit is characterized by an enhancement of protein tyrosine nitration. Annals of Botany, 116(4), 637–647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, H., Lai, Z., Shi, J., Xiao, Y., Chen, Z., & Xu, X. (2010). Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biology, 10(1), 1–5.

    Article  CAS  Google Scholar 

  • Chen, Z., Gu, Q., Yu, X., Huang, L., Xu, S., Wang, R., Shen, W., & Shen, W. (2018). Hydrogen peroxide acts downstream of melatonin to induce lateral root formation. Annals of Botany, 121(6), 1127–1136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary, S. P., Yu, J. Q., Yamaguchi-Shinozaki, K., Shinozaki, K., & Tran, L. S. (2012). Benefits of brassinosteroid crosstalk. Trends in Plant Science, 17(10), 594–605.

    Article  CAS  PubMed  Google Scholar 

  • Clouse, S. D. (2011). Brassinosteroid signal transduction: From receptor kinase activation to transcriptional networks regulating plant development. Plant Cell, 23, 1219–1230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corpas, F. J., Freschi, L., Rodríguez-Ruiz, M., Mioto, P. T., González-Gordo, S., & Palma, J. M. (2018). Nitro-oxidative metabolism during fruit ripening. Journal of Experimental Botany, 69(14), 3449–3463.

    Article  CAS  PubMed  Google Scholar 

  • Cui, F., Liu, L., Zhao, Q., Zhang, Z., Li, Q., Lin, B., Wu, Y., Tang, S., & Xie, Q. (2012). Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance. The Plant Cell, 24(1), 233–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuypers, A., Karen, S., Jos, R., Kelly, O., Els, K., Tony, R., Nele, H., Nathalie, V., Yves, G., Jan, C., & Jaco, V. (2011). The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. Journal of Plant Physiology, 168(4), 309–316.

    Article  CAS  PubMed  Google Scholar 

  • Dai, C., Lee, Y., Lee, I. C., Nam, H. G., & Kwak, J. M. (2018). Calmodulin 1 regulates senescence and ABA response in Arabidopsis. Frontiers in Plant Science, 9, 803.

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng, X. G., Zhu, T., Zhang, D. W., & Lin, H. H. (2015). The alternative respiratory pathway is involved in brassinosteroid-induced environmental stress tolerance in Nicotiana benthamiana. Journal of Experimental Botany, 66, 6219–6232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desikan, R., Soheila, A. H., Hancock, J. T., & Neill, S. J. (2001). Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiology, 127(1), 159–172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doussière, J., & Vignais, P. V. (1992). Diphenyleneiodonium as an inhibitor of the NADPH oxidase complex of bovine neutrophils: Factors controlling the inhibitory potency of diphenyleneiodonium in a cell-free system of oxidase activation. European Journal of Biochemistry, 208(1), 61–71.

    Article  PubMed  Google Scholar 

  • Eblen, S. T. (2018). Extracellular-regulated kinases: Signaling from Ras to ERK substrates to control biological outcomes. In Advances in cancer research (Vol. 138, pp. 99–142). Academic Press.

    Google Scholar 

  • Eulgem, T., & Somssich, I. E. (2007). Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology, 10(4), 366–371.

    Article  CAS  PubMed  Google Scholar 

  • Fuentes, L., Figueroa, C. R., & Valdenegro, M. (2019). Recent advances in hormonal regulation and cross-talk during non-climacteric fruit development and ripening. Horticulturae, 5(2), 45.

    Article  Google Scholar 

  • Gadjev, I., Vanderauwera, S., Gechev, T. S., Laloi, C., Minkov, I. N., Shulaev, V., Apel, K., Inzé, D., Mittler, R., & Van Breusegem, F. (2006). Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiology, 141(2), 436–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González, A., Cabrera, M. D. L. Á., Henríquez, M. J., Contreras, R. A., Morales, B., & Moenne, A. (2012). Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess. Plant Physiology, 158(3), 1451–1462.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gampala, S. S., Kim, T. W., He, J. X., Tang, W., Deng, Z., Bai, M. Y., Guan, S., Lalonde, S., Sun, Y., Gendron, J. M., & Chen, H. (2007). An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. Developmental Cell, 13(2), 177–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grove, M. D., Spencer, G. F., Rohwedder, W. K., Mandava, N., Worley, J. F., Warthen, J. D., Steffens, G. L., Flippen-Anderson, J. L., & Cook, J. C. (1979). Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature, 281(5728), 216–217.

    Article  CAS  Google Scholar 

  • Guo, P., Li, Z., Huang, P., Li, B., Fang, S., Chu, J., & Guo, H. (2017). A tripartite amplification loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence. The Plant Cell, 29(11), 2854–2870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, D. L., Wang, Z. G., Li, Q., Gu, S. C., Zhang, G. H., & Yu, Y. H. (2019). Hydrogen peroxide treatment promotes early ripening of Kyoho grape. Australian Journal of Grape and Wine Research, 25(3), 357–362.

    Article  CAS  Google Scholar 

  • Halliwell, B. (1999). Antioxidant defence mechanisms: From the beginning to the end (of the beginning). Free Radical Research, 31, 261–272.

    Article  CAS  PubMed  Google Scholar 

  • He, Y., Tang, W., Swain, J. D., Green, A. L., Jack, T. P., & Gan, S. (2001). Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiology, 126(2), 707–716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, F., Li, H. G., Wang, J. J., Su, Y., Wang, H. L., Feng, C. H., Yang, Y., Niu, M. X., Liu, C., Yin, W., Xia, X., & Pe, S. T. Z. (2019). A C2H2-type zinc finger transcription factor from Populus euphratica, enhances freezing tolerance through modulation of ROS scavenging by directly regulating Pe APX 2. Plant Biotechnology Journal, 17(11), 2169–2183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong-juan, J., Yan-jie, Y., & Guo-qiang, Z. (2017). Hydrogen peroxide involved in tip growth of wheat (Triticum Aestivum) root hairs by high concentration Chlorogenic acid. Canad. J. Agri. Crop, 2, 22–33.

    Article  Google Scholar 

  • Hussain, A., Nazir, F., & Fariduddin, Q. (2019). 24-epibrassinolide and spermidine alleviate Mn stress via the modulation of root morphology, stomatal behavior, photosynthetic attributes and antioxidant defense in Brassica juncea. Physiology and Molecular Biology of Plants, 25(4), 905–919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaillais, Y., Hothorn, M., Belkhadir, Y., Dabi, T., Nimchuk, Z. L., Meyerowitz, E. M., & Chory, J. (2011). Tyrosine phosphorylation controls brassinosteroid receptor activation by triggering membrane release of its kinase inhibitor. Genes & Development, 25, 232–237.

    Article  CAS  Google Scholar 

  • Jiang, Y. P., Cheng, F., Zhou, Y. H., Xia, X. J., Mao, W. H., Shi, K., Chen, Z. X., & Yu, J. Q. (2012). Hydrogen peroxide functions as a secondary messenger for brassinosteroids-induced CO2 assimilation and carbohydrate metabolism in Cucumis sativus. Journal of Zhejiang University. Science, 13(10), 811–823.

    Article  CAS  Google Scholar 

  • Jonak, C., Nakagami, H., & Hirt, H. (2004). Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiology, 136(2), 3276–3283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur, H., Sirhindi, G., Bhardwaj, R., Alyemeni, M. N., Siddique, K. H., & Ahmad, P. (2018). 28-homobrassinolide regulates antioxidant enzyme activities and gene expression in response to salt-and temperature-induced oxidative stress in Brassica juncea. Scientific Reports, 8(1), 1–3.

    Article  Google Scholar 

  • Khan, T. A., Yusuf, M., Ahmad, A., Bashir, Z., Saeed, T., Fariduddin, Q., Hayat, S., Mock, H. P., & Wu, T. (2019). Proteomic and physiological assessment of stress sensitive and tolerant variety of tomato treated with brassinosteroids and hydrogen peroxide under low-temperature stress. Food Chemistry, 289, 500–511.

    Article  CAS  PubMed  Google Scholar 

  • Khedia, J., Agarwal, P., & Agarwal, P. K. (2018). AlNAC4 transcription factor from halophyte Aeluropus lagopoides mitigates oxidative stress by maintaining ROS homeostasis in transgenic tobacco. Frontiers in Plant Science, 9, 1522.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, Y., Park, S. U., Shin, D. M., Pham, G., Jeong, Y. S., & Kim, S. H. (2020). ATBS1-INTERACTING FACTOR 2 negatively regulates dark-and brassinosteroid-induced leaf senescence through interactions with INDUCER OF CBF EXPRESSION 1. Journal of Experimental Botany, 71(4), 1475–1490.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J. S., & Ellis, B. E. (2007). Arabidopsis MAPK phosphatase 2 (MKP2) positively regulates oxidative stress tolerance and inactivates the MPK3 and MPK6 MAPKs. The Journal of Biological Chemistry, 282(34), 25020–25029.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. C., Lee, W. K., Ali, A., Kumar, M., Yang, T. J., & Song, K. (2017). Genome-wide identification of the dehydrin genes in the Cucurbitaceae species. Plant Breed. Biotechnol., 5(4), 282–292.

    Article  Google Scholar 

  • Li, J. G., Fan, M., Hua, W., Tian, Y., Chen, L. G., Sun, Y., & Bai, M. Y. (2020). Brassinosteroid and hydrogen peroxide interdependently induce stomatal opening by promoting guard cell starch degradation. The Plant Cell, 32(4), 984–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Ye, N., Liu, R., Chen, M., & Zhang, J. (2010). H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. Journal of Experimental Botany, 61, 2979–2990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lozano-Durán, R., & Zipfel, C. (2015). Trade-off between growth and immunity: Role of brassinosteroids. Trends in Plant Science, 20(1), 12–19.

    Article  PubMed  CAS  Google Scholar 

  • Luo, X. M., Lin, W. H., Zhu, S., Zhu, J. Y., Sun, Y., Fan, X. Y., Cheng, M., Hao, Y., Oh, E., Tian, M., & Liu, L. (2010). Integration of light-and brassinosteroid-signaling pathways by a GATA transcription factor in Arabidopsis. Developmental Cell, 19(6), 872–883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv, B., Tian, H., Zhang, F., Liu, J., Lu, S., Bai, M., Li, C., & Ding, Z. (2018). Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis. PLoS Genetics, 14(1), e1007144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller, G., Shulaev, V., & Mittler, R. (2008). Reactive oxygen signaling and abiotic stress. Physiologia Plantarum, 133, 481–489.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R., Kim, Y., Song, L., Coutu, J., Coutu, A., Ciftci-Yilmaz, S., Lee, H., Stevenson, B., & Zhu, J. K. (2006). Gain-and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Letters, 580(28–29), 6537–6542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondal, R., & Choudhuri, M. A. (1981). Role of hydrogen peroxide in senescence of excised leaves of rice and maize. Biochemie und Physiologie der Pflanzen, 176(8), 700–709.

    Article  CAS  Google Scholar 

  • Mullineaux, P. M., Exposito-Rodriguez, M., Laissue, P. P., & Smirnoff, N. (2018). ROS-dependent signalling pathways in plants and algae exposed to high light: Comparisons with other eukaryotes. Free Radical Biology and Medicine, 122, 52–64.

    Article  CAS  PubMed  Google Scholar 

  • Nakagami, H., Soukupová, H., Schikora, A., Zárský, V., & Hirt, H. (2006). A mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. The Journal of Biological Chemistry, 281(50), 38697–38704.

    Article  CAS  PubMed  Google Scholar 

  • Nazir, F., Hussain, A., & Fariduddin, Q. (2019a). Interactive role of epibrassinolide and hydrogen peroxide in regulating stomatal physiology, root morphology, photosynthetic and growth traits in Solanum lycopersicum L. under nickel stress. Environmental and Experimental Botany, 162, 479–495.

    Article  CAS  Google Scholar 

  • Nazir, F., Hussain, A., & Fariduddin, Q. (2019b). Hydrogen peroxide modulate photosynthesis and antioxidant systems in tomato (Solanum lycopersicum L.) plants under copper stress. Chemosphere, 230, 544–558.

    Article  CAS  PubMed  Google Scholar 

  • Nazir, F., Fariduddin, Q., & Khan, T. A. (2020a). Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. Chemosphere, 14, 126486.

    Article  CAS  Google Scholar 

  • Nazir, F., Fariduddin, Q., Hussain, A., & Khan, T. A. (2020b). Brassinosteroid and hydrogen peroxide improve photosynthetic machinery, stomatal movement, root morphology and cell viability and reduce Cu-triggered oxidative burst in tomato. Ecotoxicology and Environmental Safety, 207, 111081.

    Article  PubMed  CAS  Google Scholar 

  • Nie, W. F., Wang, M. M., Xia, X. J., Zhou, Y. H., Shi, K., & Chen, Z. (2013). Silencing of tomato RBOH1 and MPK2 abolishes brassinosteroid-induced H2O2 generation and stress tolerance. Plant, Cell & Environment, 36, 789–803.

    Article  CAS  Google Scholar 

  • Nolan, T., Chen, J., & Yin, Y. (2017). Cross-talk of Brassinosteroid signaling in controlling growth and stress responses. The Biochemical Journal, 474(16), 2641–2661.

    Article  CAS  PubMed  Google Scholar 

  • Opdenakker, K., Remans, T., Vangronsveld, J., & Cuypers, A. (2012). Mitogen-activated protein (MAP) kinases in plant metal stress: Regulation and responses in comparison to other biotic and abiotic stresses. International Journal of Molecular Sciences, 13(6), 7828–7853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrov, V., Hille, J., Mueller-Roeber, B., & Gechev, T. S. (2015). ROS-mediated abiotic stress-induced programmed cell death in plants. Frontiers in Plant Science, 6, 69.

    Article  PubMed  PubMed Central  Google Scholar 

  • Remans, T., Opdenakker, K., Guisez, Y., Carleer, R., Schat, H., Vangronsveld, J., & Cuypers, A. (2012). Exposure of Arabidopsis thaliana to excess Zn reveals a Zn-specific oxidative stress signature. Environmental and Experimental Botany, 84, 61–71.

    Article  CAS  Google Scholar 

  • Rizhsky, L., Davletova, S., Liang, H., & Mittler, R. (2004). The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. The Journal of Biological Chemistry, 279(12), 11736–11743.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Ruiz, M., Mioto, P., Palma, J. M., & Corpas, F. J. (2017). S-nitrosoglutathione reductase (GSNOR) activity is down-regulated during pepper (Capsicum annuum L.) fruit ripening. Nitric Oxide, 68, 51–55.

    Article  PubMed  CAS  Google Scholar 

  • Rossel, J. B., Wilson, P. B., Hussain, D., Woo, N. S., Gordon, M. J., Mewett, O. P., Howell, K. A., Whelan, J., Kazan, K., & Pogson, B. J. (2007). Systemic and intracellular responses to photooxidative stress in Arabidopsis. The Plant Cell, 19(12), 4091–4110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena, I., Srikanth, S., & Chen, Z. (2016). Cross talk between H2O2 and interacting signal molecules under plant stress response. Frontiers in Plant Science, 7, 570.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sehar, Z., Masood, A., & Khan, N. A. (2019). Nitric oxide reverses glucose-mediated photosynthetic repression in wheat (Triticum aestivum L.) under salt stress. Environmental and Experimental Botany, 161, 277–289.

    Article  CAS  Google Scholar 

  • Shi, H., Wang, X., Ye, T., Cheng, F., Deng, J., Yang, P., Zhang, Y., & Chan, Z. (2014). The Cys2/His2-type zinc finger transcription factor ZAT6 modulates biotic and abiotic stress responses by activating salicylic acid-related genes and CBFs in Arabidopsis. Plant Physiology, 1, 114.

    Google Scholar 

  • Shi, J., Shi, G., & Tian, Z. (2015). Effect of exogenous hydrogen peroxide or ascorbic acid on senescence in cut flowers of tree peony (Paeonia suffruticosa Andr). The Journal of Horticultural Science and Biotechnology, 90(6), 689–694.

    Article  CAS  Google Scholar 

  • Shi, H., Liu, G., Wei, Y., & Chan, Z. (2018). The zinc-finger transcription factor ZAT6 is essential for hydrogen peroxide induction of anthocyanin synthesis in Arabidopsis. Plant Molecular Biology, 97(1–2), 165–176.

    Article  CAS  PubMed  Google Scholar 

  • Song, Y., Xiang, F., Zhang, G., Miao, Y., Miao, C., & Song, C. P. (2016). Abscisic acid as an internal integrator of multiple physiological processes modulates leaf senescence onset in Arabidopsis thaliana. Frontiers in Plant Science, 7, 181.

    Article  PubMed  PubMed Central  Google Scholar 

  • Steber, C. M., & McCourt, P. (2001). A role for brassinosteroids in germination in Arabidopsis. Plant Physiology, 125(2), 763–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Y., Fan, X. Y., Cao, D. M., Tang, W., He, K., Zhu, J. Y., He, J. X., Bai, M. Y., Zhu, S., Oh, E., & Patil, S. (2010). Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Developmental Cell, 19, 765–777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, Y., Fan, M., Qin, Z., Lv, H., Wang, M., Zhang, Z., Zhou, W., Zhao, N., Li, X., Han, C., & Ding, Z. (2018). Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor. Nature Communications, 9(1), 1–3.

    Article  CAS  Google Scholar 

  • Tsukagoshi, H., Busch, W., & Benfey, P. N. (2010). Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell, 143(4), 606–616.

    Article  CAS  PubMed  Google Scholar 

  • Van Beek, C.R. (2018). Overexpression of a tomato SlNAC2 gene in Nicotiana tabacum to determine its potential role in enhancing drought tolerance in plants.

    Google Scholar 

  • Verslues, P. E., Kim, Y. S., & Zhu, J. K. (2007). Altered ABA, proline and hydrogen peroxide in an Arabidopsis glutamate: Glyoxylate aminotransferase mutant. Plant Molecular Biology, 64(1–2), 205–217.

    Article  CAS  PubMed  Google Scholar 

  • Vilarrasa-Blasi, J., González-García, M. P., Frigola, D., Fàbregas, N., Alexiou, K. G., López-Bigas, N., Rivas, S., Jauneau, A., Lohmann, J. U., Benfey, P. N., & Ibañes, M. (2014). Regulation of plant stem cell quiescence by a brassinosteroid signaling module. Developmental Cell, 30(1), 36–47.

    Article  CAS  PubMed  Google Scholar 

  • Waisi, H. K., Petković, A. Z., Nikolić, B. R., Janković, B. Ž., Raičević, V. B., Lalević, B. T., & Giba, Z. S. (2017). Influence of 24-epibrassinolide on seedling growth and distribution of mineral elements in two maize hybrids. HemijskaIndustrija, 71(3), 201–209.

    Google Scholar 

  • Wang, X., & Chory, J. (2006). Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science, 313, 1118–1122.

    Article  CAS  PubMed  Google Scholar 

  • Wang, P., & Song, C. P. (2008). Guard-cell signalling for hydrogen peroxide and abscisic acid. The New Phytologist, 178(4), 703–718.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z. Y., Nakano, T., Gendron, J., He, J., Chen, M., Vafeados, D., Yang, Y., Fujioka, S., Yoshida, S., Asami, T., & Chory, J. (2002). Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Developmental Cell, 2, 505–513.

    Article  CAS  PubMed  Google Scholar 

  • Wu, G., Wang, X., Li, X., Kamiya, Y., Otegui, M. S., & Chory, J. (2011). Methylation of a phosphatase specifies dephosphorylation and degradation of activated brassinosteroid receptors. Science Signaling, 14, ra29.

    Google Scholar 

  • Xia, X. J., Wang, Y. J., Zhou, Y. H., Tao, Y., Mao, W. H., Shi, K., Asami, T., Chen, Z., & Yu, J. Q. (2009). Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiology, 150(2), 801–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, X. J., Gao, C. J., Song, L. X., Zhou, Y. H., Shi, K. A., & Yu, J. Q. (2014). Role of H2O2 dynamics in brassinosteroid-induced stomatal closure and opening in Solanum lycopersicum. Plant Cell Environment, 37(9), 2036–2050.

    Article  CAS  Google Scholar 

  • Xing, Y., Jia, W., & Zhang, J. (2007). AtMEK1 mediates stress-induced gene expression of CAT1 catalase by triggering H2O2 production in Arabidopsis. Journal of Experimental Botany, 58(11), 2969–2981.

    Article  CAS  PubMed  Google Scholar 

  • Xing, Y., Jia, W., & Zhang, J. (2008). AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. The Plant Journal, 54(3), 440–451.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Z., Jiang, Y., Jia, B., & Zhou, G. (2016). Elevated-CO2 response of stomata and its dependence on environmental factors. Frontiers in Plant Science, 7, 657.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin, Y., Wang, Z. Y., Mora-Garcia, S., Li, J., Yoshida, S., Asami, T., & Chory, J. (2002). BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell, 109, 181–191.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., Zhang, L., Dong, F., Gao, J., Galbraith, D. W., & Song, C. P. (2001). Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Viciafaba. Plant Physiology, 126(4), 1438–1448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, M., Li, D., Li, Z., Hu, Q., Yang, C., Zhu, L., & Luo, H. (2013). Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiology, 161(3), 1375–1391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, J., Xia, X. J., Zhou, Y. H., Shi, K., Chen, Z., & Yu, J. Q. (2014). RBOH1-dependent H2O2 production and subsequent activation of MPK1/2 play an important role in acclimation-induced cross-tolerance in tomato. Journal of Experimental Botany, 65(2), 595–607.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, T., Tan, W. R., Deng, X. G., Zheng, T., Zhang, D. W., & Lin, H. H. (2015). Effects of brassinosteroids on quality attributes and ethylene synthesis in postharvest tomato fruit. Postharvest Biology and Technology, 100, 196–204.

    Article  CAS  Google Scholar 

  • Zhu, T., Deng, X., Zhou, X., Zhu, L., Zou, L., Li, P., Zhang, D., & Lin, H. (2016). Ethylene and hydrogen peroxide are involved in brassinosteroid-induced salt tolerance in tomato. Scientific Reports, 6, 35392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, X. F., Yuan, P., Zhang, C., Li, T. Y., & Xuan, Y. H. (2018). RAVL1 an upstream component of brassinosteroid signalling and biosynthesis, regulates ethylene signalling via activation of EIL1 in rice. Plant Biotechnology Journal, 16(8), 1399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nazir, F., Qazi, F., Khan, M.T.A. (2022). Interaction Between Brassinosteroids and Hydrogen Peroxide Networking Signal Molecules in Plants. In: Khan, M.T.A., Yusuf, M., Qazi, F., Ahmad, A. (eds) Brassinosteroids Signalling. Springer, Singapore. https://doi.org/10.1007/978-981-16-5743-6_4

Download citation

Publish with us

Policies and ethics