Skip to main content

Plant Proteomics and Metabolomics Investigations in Regulation of Brassinosteroid

  • Chapter
  • First Online:
Brassinosteroids Signalling

Abstract

Brassinosteroids (BRs) are plant-specific, intrinsically steroidal, and key hormones synthesized by the plant cells. The hormone mediates plant growth and development events, right from the decisive event of seed germination. Proteins are also the functional factors of a cell, which respond and regulate almost all physiological processes. The chapter discusses the specific role of BRs at different stages of seed germination, concentrates the signaling factors, and categorizes the signaling mechanisms. However, all the details have been provided with a special focus on proteins associated with BR. The chapter has also enlisted the BR-sensitive proteins along with their specific roles in cell physiology and metabolism. It describes the details of BR-sensitive proteins at three stages of seed germination and differentiates BR signaling into two distinct pathways. A total of 88 protein species have been found BR-sensitive, for which the international identifiers and cellular activities have been described. Although there are many gaps in understanding the BR responses and the mechanisms behind them, the current article would be helpful to understand the behavior of the hormone and the dimensions of its cellular responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas, H. M. K., et al. (2020a). Heterologous WRKY and NAC transcription factors triggered resistance in Nicotiana benthamiana. Journal of King Saud University Science, 32, 3005–3013.

    Article  Google Scholar 

  • Abbas, H. M. K., et al. (2020b). Metabolic and transcriptomic analysis of two Cucurbita moschata germplasms throughout fruit development. BMC Genomics, 21, 365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad, A., & Ashraf, Y. (2016). In vitro and in vivo management of Alternaria leaf spot of Brassica campestris L. Journal of Plant Pathology and Microbiology, 7, 1000365.

    Google Scholar 

  • Ahmad, A., Shafique, S., & Shafique, S. (2013). Cytological and physiological basis for tomato varietal resistance against Alternaria alternata. Journal of the Science of Food and Agriculture, 93, 2315–2322.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, A., Shafique, S., & Shafique, S. (2014a). Intracellular interactions involved in induced systemic resistance in tomato. Scientia Horticulturae, 176, 127–133.

    Article  CAS  Google Scholar 

  • Ahmad, A., Shafique, S., & Shafique, S. (2014b). Molecular basis of antifungal resistance in tomato varieties. Pakistan Journal of Agricultural Sciences, 51, 683–687.

    Google Scholar 

  • Ahmad, A., et al. (2018). Modelling of cotton leaf curl viral infection in Pakistan and its correlation with meteorological factors up to 2015. Climate and Development, 10, 520–525.

    Article  Google Scholar 

  • Ahmad, A., et al. (2019). Benzenedicarboxylic acid upregulates O48814 and Q9FJQ8 for improved nutritional contents of tomato and low risk of fungal attack. Journal of the Science of Food and Agriculture, 99, 6139–6154.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, A., et al. (2020a). First report of fusarium nelsonii causing early-stage fruit blight of cucumber in Guangzhou, China. Plant Disease, 104, 1542.

    Article  Google Scholar 

  • Ahmad, A., et al. (2020b). Metabolic and proteomic perspectives of augmentation of nutritional contents and plant defense in Vigna unguiculata. Biomolecules, 10, 224.

    Article  CAS  PubMed Central  Google Scholar 

  • Ahmad, A., et al. (2020c). Dopamine alleviates hydrocarbon stress in Brassica oleracea through modulation of physio-biochemical attributes and antioxidant defense systems. Chemosphere, 128633. https://doi.org/10.1016/j.chemosphere.2020.128633

  • Ahmad, A., et al. (2021a). Functional and structural analysis of a novel acyltransferase from pathogenic Phytophthora melonis. ACS Omega. https://doi.org/10.1021/acsomega.0c03186

  • Ahmad, A., et al. (2021b). Synergistic effects of nitric oxide and silicon on promoting plant growth, oxidative stress tolerance and reduction of arsenic uptake in Brassica juncea. Chemosphere, 262, 128384.

    Article  CAS  PubMed  Google Scholar 

  • Ahmed, S., et al. (2017). Characterization of anti-bacterial compounds from the seed coat of Chinese windmill palm tree (Trachycarpus fortunei). Frontiers in Microbiology, 8, 1894.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aker, J., et al. (2007). In vivo hexamerization and characterization of the Arabidopsis AAA ATPase CDC48A complex using Förster resonance energy transfer-fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy. Plant Physiology, 145, 339–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akram, W., Anjum, T., Ali, B., & Ahmad, A. (2013). Screening of native bacillus strains to induce systemic resistance in tomato plants against fusarium wilt in split root system and its field applications. International Journal of Agriculture and Biology, 15.

    Google Scholar 

  • Akram, W., Anjum, T., & Ahmad, A. (2014a). Basal susceptibility of tomato varieties against different isolates of fusarium oxysporum f. sp. lycopersici. International Journal of Agriculture and Biology, 16, 171–176.

    CAS  Google Scholar 

  • Akram, W., Anjum, T., Ahmad, A., & Moeen, R. (2014b). First report of Curvularia lunata causing leaf spots on Sorghum bicolor from Pakistan. Plant Disease, 98, 1007–1007.

    Article  CAS  PubMed  Google Scholar 

  • Akram, W., et al. (2019a). First report of stem and root rot of Chinese kale caused by Fusarium incarnatum-equiseti species complex in China. Plant Disease, 103, 1781.

    Article  Google Scholar 

  • Akram, W., et al. (2019b). Leaf spot disease caused by Alternaria arborescens, A. tenuissima, and A. infectoria on Brassica rapa subsp. parachinensis in China. Plant Disease, 103, 2480.

    Article  Google Scholar 

  • Akram, W., et al. (2019c). Alternaria brassicicola causing leaf spot disease on broccoli in China. Plant Disease, 103, 2960–2960.

    Article  Google Scholar 

  • Akram, W., et al. (2019d). Pythium ultimum causing black stem rot of Brassica oleracea var. alboglabra in China. Plant Disease, 103, 2698–2698.

    Article  CAS  Google Scholar 

  • Akram, W., et al. (2020a). Liquiritin elicitation can increase the content of medicinally important glucosinolates and phenolic compounds in Chinese kale plants. Journal of the Science of Food and Agriculture, 100, 1616–1624.

    Article  CAS  PubMed  Google Scholar 

  • Akram, W., et al. (2020b). Occurrence of head rot disease caused by Fusarium verticillioides on Chinese flowering cabbage (Brassica rapa L subsp. parachinensis) in China. Crop Protection, 134, 2019–2021.

    Article  CAS  Google Scholar 

  • Akram, W., et al. (2020c). First report of stem rot of Taro caused by Pythium ultimum in China. Plant Disease, 104, 8–11.

    Article  Google Scholar 

  • Akram, W., et al. (2020d). Pseudocercospora exilis causing leaf spot disease on Brassica rapa subsp. parachinensis in China. Plant Disease, 104, 1861–1861.

    Article  Google Scholar 

  • Alexandrov, N. N., et al. (2009). Insights into corn genes derived from large-scale cDNA sequencing. Plant Molecular Biology, 69, 179–194.

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Blanco, C., et al. (2005). Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis. Plant Physiology, 139, 1304–1312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. (2000). Nature, 408, 796–815.

    Google Scholar 

  • Anjum, T., Akram, W., Shafique, S., Sahfique, S., & Ahmad, A. (2017). Metabolomic analysis identifies synergistic role of hormones biosynthesis and Phenylpropenoid pathways during fusarium wilt resistance in tomato plants. International Journal of Agriculture and Biology, 19, 1073–1078.

    Article  CAS  Google Scholar 

  • Bai, M. Y., Fan, M., Oh, E., & Wang, Z. Y. (2013). A triple helix-loop-helix/basic helix-loop-helix cascade controls cell elongation downstream of multiple hormonal and environmental signaling pathways in Arabidopsis. Plant Cell, 24, 4917–4929.

    Article  CAS  Google Scholar 

  • Bashir, Z., et al. (2016). Tomato plant proteins actively responding to fungal applications and their role in cell physiology. Frontiers in Physiology, 7, 257.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beato, M., Herrlich, P., & Schütz, G. (1995). Steroid hormone receptors: Many actors in search of a plot. Cell, 83, 851–857.

    Article  CAS  PubMed  Google Scholar 

  • Breda, A. S., Hazak, O., & Hardtke, C. S. (2017). Phosphosite charge rather than shootward localization determines OCTOPUS activity in root protophloem. Proceedings of the National Academy of Sciences of the United States of America, 114, E5721–E5730.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cano-Delgado, A. (2004). BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development, 131, 5341–5351.

    Article  CAS  PubMed  Google Scholar 

  • Caro, E., Castellano, M. M., & Gutierrez, C. (2007). A chromatin link that couples cell division to root epidermis patterning in Arabidopsis. Nature, 447, 213–217.

    Article  CAS  PubMed  Google Scholar 

  • Ceserani, T., Trofka, A., Gandotra, N., & Nelson, T. (2009). VH1/BRL2 receptor-like kinase interacts with vascular-specific adaptor proteins VIT and VIK to influence leaf venation. The Plant Journal, 57, 1000–1014.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., et al. (2017). Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses. Plant Cell, 29, 1425–1439.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, C.-Y., et al. (2017). Araport11: A complete reannotation of the Arabidopsis thaliana reference genome. The Plant Journal, 89, 789–804.

    Article  CAS  PubMed  Google Scholar 

  • Clay, N. K., & Nelson, T. (2002). VH1, a provascular cell-specific receptor kinase that influences leaf cell patterns in arabidopsis. Plant Cell, 14, 2707–2722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cloix, C., et al. (2012). C-terminal region of the UV-B photoreceptor UVR8 initiates signaling through interaction with the COP1 protein. Proceedings of the National Academy of Sciences of the United States of America, 109, 16366–16370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, X., et al. (2016). REF6 recognizes a specific DNA sequence to demethylate H3K27me3 and regulate organ boundary formation in Arabidopsis. Nature Genetics, 48, 694–699.

    Article  CAS  PubMed  Google Scholar 

  • Falkenstein, E., Tillmann, H. C., Christ, M., Feuring, M., & Wehling, M. (2000). Multiple actions of steroid hormones – A focus on rapid, nongenomic effects. Pharmacological Reviews, 52, 513–555.

    CAS  PubMed  Google Scholar 

  • Fatimababy, A. S., et al. (2010). Cross-species divergence of the major recognition pathways of ubiquitylated substrates for ubiquitin/26S proteasome-mediated proteolysis. The FEBS Journal, 277, 796–816.

    Article  CAS  PubMed  Google Scholar 

  • Furuta, K., et al. (2011). The CKH2/PKL chromatin remodeling factor negatively regulates Cytokinin responses in Arabidopsis Calli. Plant & Cell Physiology, 52, 618–628.

    Article  CAS  Google Scholar 

  • Goetz, M., Vivian-Smith, A., Johnson, S. D., & Koltunow, A. M. (2006). AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis. Plant Cell, 18, 1873–1886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha, C. M., Jun, J. H., & Fletcher, J. C. (2010). Control of arabidopsis leaf morphogenesis through regulation of the YABBY and KNOX families of transcription factors. Genetics, 186, 197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hafeez, M., et al. (2019). Gossypol-induced fitness gain and increased resistance to deltamethrin in beet armyworm, Spodoptera exigua (Hübner). Pest Management Science, 75, 683–693.

    Article  CAS  PubMed  Google Scholar 

  • Haruta, M., Sabat, G., Stecker, K., Minkoff, B. B., & Sussman, M. R. (2014). A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science, 343, 408–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan, M. K., et al. (2015). Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Frontiers in Plant Science, 6.

    Google Scholar 

  • He, D., & Yang, P. (2013). Proteomics of rice seed germination. Frontiers in Plant Science, 4.

    Google Scholar 

  • He, J. X., Gendron, J. M., Yang, Y., Li, J., & Wang, Z. Y. (2002). The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 99, 10185–10190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, J. X., et al. (2005). BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science, 307, 1634–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano, K., et al. (2017). SMALL ORGAN SIZE 1 and SMALL ORGAN SIZE 2/DWARF AND LOW-TILLERING form a complex to integrate Auxin and Brassinosteroid signaling in Rice. Molecular Plant, 10, 590–604.

    Article  CAS  PubMed  Google Scholar 

  • Hong, Z., et al. (2003). A Rice Brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 15, 2900–2910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howell, K. A., et al. (2009). Mapping metabolic and transcript temporal switches during germination in rice highlights specific transcription factors and the role of RNA instability in the germination process. Plant Physiology, 149, 961–980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, H. Y., et al. (2013). BR signal influences arabidopsis ovule and seed number through regulating related genes expression by BZR1. Molecular Plant, 6, 456–469.

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim, A., Shahid, A. A., Noreen, S., & Ahmad, A. (2016). Physiological changes against meloidogyne incognita in rhizobacterial treated eggplant under organic conditions. The Journal of Animal and Plant Sciences, 26, 805–813.

    CAS  Google Scholar 

  • Ibrahim, A., Shahid, A. A., & Ahmad, A. (2017). Evaluation of carrier materials to develop Bacillus subtilis formulation to control root knot nematode infection and promote agroeconomic traits in eggplant. The Journal of Animal and Plant Sciences, 27.

    Google Scholar 

  • Jafari, M., et al. (2018). Genetic diversity and biogeography of T. officinale inferred from multi locus sequence typing approach. PLoS One, 13, e0203275.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Javaid, A., Akram, W., Shoaib, A., Haider, M. S., & Ahmad, A. (2014). ISSR analysis of genetic diversity in Dalbergia sissoo in Punjab, Pakistan. Pakistan Journal of Botany, 46.

    Google Scholar 

  • Jeong, J.-H., et al. (2009). Repression of FLOWERING LOCUS T chromatin by functionally redundant histone H3 lysine 4 demethylases in Arabidopsis. PLoS One, 4, e8033.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeong, R. D., et al. (2010). Cryptochrome 2 and phototropin 2 regulate resistance protein-mediated viral defense by negatively regulating an E3 ubiquitin ligase. Proceedings of the National Academy of Sciences of the United States of America, 107, 13538–13543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung, J. H., et al. (2016). Phytochromes function as thermosensors in Arabidopsis. Science, 354, 886–889.

    Article  CAS  PubMed  Google Scholar 

  • Kataya, A. R. A., et al. (2015). Protein phosphatase 2A holoenzyme is targeted to peroxisomes by piggybacking and positively affects peroxisomal b-oxidation. Plant Physiology, 167, 493–506.

    Article  CAS  PubMed  Google Scholar 

  • Kawahara, Y., et al. (2013). Improvement of the oryza sativa nipponbare reference genome using next generation sequence and optical map data. Rice, 6, 3–10.

    Article  Google Scholar 

  • Khan, M., et al. (2013). Brassinosteroid-regulated GSK3/Shaggy-like kinases phosphorylate mitogen-activated protein (MAP) kinase kinases, which control stomata development in Arabidopsis thaliana. The Journal of Biological Chemistry, 288, 7519–7527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, T. A., Fariduddin, Q., & Yusuf, M. (2017a). Low-temperature stress: Is phytohormones application a remedy? Environmental Science and Pollution Research, 24, 21574–21590.

    Article  CAS  PubMed  Google Scholar 

  • Khan, W. U., et al. (2017b). Application of bacillus megaterium MCR-8 improved phytoextraction and stress alleviation of nickel in Vinca rosea. International Journal of Phytoremediation, 19, 813–824.

    Article  CAS  PubMed  Google Scholar 

  • Khan, W. U. W. U., et al. (2017c). Role of Ni-tolerant Bacillus spp. and Althea rosea L. in the phytoremediation of Ni-contaminated soils. International Journal of Phytoremediation, 19, 470–477.

    Article  CAS  PubMed  Google Scholar 

  • Khan, W. U. W. U., Ahmad, S. R. S. R., Yasin, N. A. N. A., Ali, A., & Ahmad, A. (2017d). Effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the phytoremediation potential of Catharanthus roseus (L.) in Cu and Pb-contaminated soils. International Journal of Phytoremediation, 19, 514–521.

    Article  PubMed  CAS  Google Scholar 

  • Khan, W. U., et al. (2018). Role of Burkholderia cepacia CS8 in Cd-stress alleviation and phytoremediation by Catharanthus roseus. International Journal of Phytoremediation, 20.

    Google Scholar 

  • Khan, T. A., et al. (2019). Proteomic and physiological assessment of stress sensitive and tolerant variety of tomato treated with brassinosteroids and hydrogen peroxide under low-temperature stress. Food Chemistry, 289, 500–511.

    Article  CAS  PubMed  Google Scholar 

  • Kim, T. W., Guan, S., Burlingame, A. L., & Wang, Z. Y. (2011). The CDG1 kinase mediates Brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2. Molecular Cell, 43, 561–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakhssassi, N., et al. (2012). The arabidopsis TETRATRICOPEPTIDE THIOREDOXIN-LIKE gene family is required for osmotic stress tolerance and male sporogenesis. Plant Physiology, 158, 1252–1266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leubner-Metzger, G. (2001). Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathways. Planta, 213, 758–763.

    Article  CAS  PubMed  Google Scholar 

  • Li, Q.-F. F., et al. (2016). Dissection of brassinosteroid-regulated proteins in rice embryos during germination by quantitative proteomics. Scientific Reports, 6, 34583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J., Zhong, R., & Palva, E. T. (2017a). WRKY70 and its homolog WRKY54 negatively modulate the cell wall-associated defenses to necrotrophic pathogens in Arabidopsis. PLoS One, 12, e0183731.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, K., et al. (2017b). AIK1, a mitogen-activated protein kinase, modulates abscisic acid responses through the MKK5-MPK6 kinase cascade. Plant Physiology, 173, 1391–1408.

    Article  CAS  PubMed  Google Scholar 

  • Li, G., et al. (2021). Hydrogen sulfide mitigates cadmium induced toxicity in Brassica rapa by modulating physiochemical attributes, osmolyte metabolism and antioxidative machinery. Chemosphere, 263, 127999.

    Article  CAS  PubMed  Google Scholar 

  • Liu, L., et al. (2014). Elevated levels of MYB30 in the phloem accelerate flowering in Arabidopsis through the regulation of FLOWERING LOCUS T. PLoS One, 9, e89799.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo, M., et al. (2012). Histone deacetylase HDA6 is functionally associated with AS1 in repression of KNOX genes in Arabidopsis. PLoS Genetics, 8, e1003114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao, Y., Pavangadkar, K. A., Thomashow, M. F., & Triezenberg, S. J. (2006). Physical and functional interactions of Arabidopsis ADA2 transcriptional coactivator proteins with the acetyltransferase GCN5 and with the cold-induced transcription factor CBF1. Biochimica et Biophysica Acta (BBA) – Gene Structure and Expression, 1759, 69–79.

    Article  CAS  Google Scholar 

  • Martínez-García, J. F., Huq, E., & Quail, P. H. (2000). Direct targeting of light signals to a promoter element-bound transcription factor. Science, 288, 859–863.

    Article  PubMed  Google Scholar 

  • McCarty, D. R., & Chory, J. (2000). Conservation and innovation in plant signaling pathways. Cell, 103, 201–209.

    Article  CAS  PubMed  Google Scholar 

  • Meng, X., et al. (2013). A MAPK cascade downstream of ERECTA receptor-like protein kinase regulates Arabidopsis inflorescence architecture by promoting localized cell proliferation. Plant Cell, 24, 4948–4960.

    Article  CAS  Google Scholar 

  • Mora-García, S., et al. (2004). Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes & Development, 18, 448–460.

    Article  CAS  Google Scholar 

  • Mori, M., et al. (2002). Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiology, 130, 1152–1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagpal, P., et al. (2005). Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development, 132, 4107–4118.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, Y., Kato, T., Yamashino, T., Murakami, M., & Mizuno, T. (2007). Characterization of a set of phytochrome-interacting factor-like bHLH proteins in Oryza sativa. Bioscience, Biotechnology, and Biochemistry, 71, 1183–1191.

    Article  CAS  PubMed  Google Scholar 

  • Nakashima, K., et al. (2006). Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. Plant Molecular Biology, 60, 51–68.

    Article  CAS  PubMed  Google Scholar 

  • Nazir, F., Fariduddin, Q., Hussain, A., & Khan, T. A. (2021). Brassinosteroid and hydrogen peroxide improve photosynthetic machinery, stomatal movement, root morphology and cell viability and reduce Cu- triggered oxidative burst in tomato. Ecotoxicology and Environmental Safety, 207, 111081.

    Article  CAS  PubMed  Google Scholar 

  • Niu, N., et al. (2013). EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nature Communications, 4, 1–11.

    Article  CAS  Google Scholar 

  • Pedmale, U. V., et al. (2016). Cryptochromes interact directly with PIFs to control plant growth in limiting blue light. Cell, 164, 233–245.

    Article  CAS  PubMed  Google Scholar 

  • Pillitteri, L. J., Peterson, K. M., Horst, R. J., & Torii, K. U. (2011). Molecular profiling of stomatal meristemoids reveals new component of asymmetric cell division and commonalities among stem cell populations in Arabidopsis. Plant Cell, 23, 3260–3275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi, H., et al. (2017). TRAF family proteins regulate autophagy dynamics by modulating AUTOPHAGY PROTEIN6 stability in arabidopsis. Plant Cell, 29, 890–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rombolá-Caldentey, B., Rueda-Romero, P., Iglesias-Fernández, R., Carbonero, P., & Oñate-Sánchez, L. (2014). Arabidopsis DELLA and two HD-ZIP transcription factors regulate GA signaling in the epidermis through the L1 box cis-element. Plant Cell, 26, 2905–2919.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosati, F., et al. (2005). 5α-reductase activity in Lycopersicon esculentum: Cloning and functional characterization of LeDET2 and evidence of the presence of two isoenzymes. The Journal of Steroid Biochemistry and Molecular Biology, 96, 287–299.

    Article  CAS  PubMed  Google Scholar 

  • Ryu, K. H., et al. (2005). The WEREWOLF MYB protein directly regulates CAPRICE transcription during cell fate specification in the Arabidopsis root epidermis. Development, 132, 4765–4775.

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto, T., et al. (2006). Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature Biotechnology, 24, 105–109.

    Article  CAS  PubMed  Google Scholar 

  • Sakuma, Y., et al. (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications, 290, 998–1009.

    Article  CAS  PubMed  Google Scholar 

  • Samuel, M. A., et al. (2008). Interactions between the S-domain receptor kinases and AtPUB-ARM E3 ubiquitin ligases suggest a conserved signaling pathway in arabidopsis. Plant Physiology, 147, 2084–2095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnable, P. S., et al. (2009). The B73 maize genome: Complexity, diversity, and dynamics. Science, 326, 1112–1115.

    Article  CAS  PubMed  Google Scholar 

  • Shafique, S., Akram, W., Anjum, T., Ahmad, A., & Shafique, S. (2014a). Comparative studies on phytochemistry, antibacterial and antifungal properties of Alstonia scholaris and Millettia pinnata. Australasian Plant Disease Notes, 9, 132.

    Article  Google Scholar 

  • Shafique, S., et al. (2014b). Determination of molecular and biochemical changes in cotton plants mediated by mealybug. The NJAS – Wageningen Journal of Life Sciences, 70–71, 39–45.

    Article  Google Scholar 

  • Shafique, S., Shafique, S., & Ahmed, A. (2017). Defense response of Eucalyptus camaldulensis against black spot pathogen of Pisum sativum. The South African Journal of Botany, 113, 428–436.

    Article  CAS  Google Scholar 

  • Shah, K., Vervoort, J., & De Vries, S. C. (2001). Role of Threonines in the Arabidopsis thaliana somatic embryogenesis receptor kinase 1 activation loop in phosphorylation. The Journal of Biological Chemistry, 276, 41263–41269.

    Article  CAS  PubMed  Google Scholar 

  • Shah, A. A., et al. (2020a). Butanolide alleviated cadmium stress by improving plant growth, photosynthetic parameters and antioxidant defense system of brassica oleracea. Chemosphere, 261, 127728.

    Article  CAS  PubMed  Google Scholar 

  • Shah, A. A., et al. (2020b). Ameliorative role of Fbl-10 and silicon against Lead induced stress in solanum Melongena. Plant Physiology and Biochemistry, 158, 486–496.

    Article  PubMed  CAS  Google Scholar 

  • Shah, A. A., et al. (2021). Combined effect of Bacillus fortis IAGS 223 and zinc oxide nanoparticles to alleviate cadmium phytotoxicity in Cucumis melo. Plant Physiology and Biochemistry, 158, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Shi, H., et al. (2013). BR-signaling kinase1 physically associates with flagellin SENSING2 and regulates plant innate immunity in Arabidopsis. Plant Cell, 25, 1143–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, S., et al. (2018). OsFTIP7 determines auxin-mediated anther dehiscence in rice. Nature Plants, 4, 495–504.

    CAS  PubMed  Google Scholar 

  • Sreeramulu, S., et al. (2013). BSKs are partially redundant positive regulators of brassinosteroid signaling in Arabidopsis. The Plant Journal, 74, 905–919.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, A. K., et al. (2015). Short hypocotyl in white lightl interacts with elongated hypocotyl5 (Hy5) and constitutive photomorphogenic1 (COP1) and promotes COP1-mediated degradation of HY5 during arabidopsis seedling development. Plant Physiology, 169, 2922–2934.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Svenning, S., Lamark, T., Krause, K., & Johansen, T. (2011). Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. Autophagy, 7, 993–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweat, T. A., & Wolpert, T. J. (2007). Thioredoxin h5 is required for victorin sensitivity mediated by a CC-NBS-LRR gene in Arabidopsis. Plant Cell, 19, 673–687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanabe, S., et al. (2005). A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell, 17, 776–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tariq, M., Shah, A. A., Yasin, N. A., Ahmad, A., & Rizwan, M. (2020). Enhanced performance of Bacillus megaterium OSR-3 in combination with putrescine ammeliorated hydrocarbon stress in Nicotiana tabacum. International Journal of Phytoremediation, 1–11. https://doi.org/10.1080/15226514.2020.1801572

  • Theologis, A., et al. (2000). Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature, 408, 820–822.

    Article  Google Scholar 

  • Todaka, D., et al. (2012). Rice phytochrome-interacting factor-like protein OsPIL1 functions as a key regulator of internode elongation and induces a morphological response to drought stress. Proceedings of the National Academy of Sciences of the United States of America, 109, 15947–15952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran, L. S. P., et al. (2004). Isolation and functional analysis of arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell, 16, 2481–2498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., & Chory, J. (2006). Brassinoteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science, 313, 1118–1122.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., & Mao, H. (2014). On the origin and evolution of plant Brassinosteroid receptor kinases. Journal of Molecular Evolution, 78, 118–129.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z. Y., Bai, M. Y., Oh, E., & Zhu, J. Y. (2012). Brassinosteroid signaling network and regulation of photomorphogenesis. Annual Review of Genetics, 46, 701–724.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W., Bai, M. Y., & Wang, Z. Y. (2014a). The brassinosteroid signaling network-a paradigm of signal integration. Current Opinion in Plant Biology, 21, 147–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., et al. (2014b). Histone lysine methyltransferase SDG8 is involved in brassinosteroid- regulated gene expression in Arabidopsis thaliana. Molecular Plant, 7, 1303–1315.

    Article  CAS  PubMed  Google Scholar 

  • Wei, B., et al. (2015). The molecular mechanism of SPOROCYTELESS/NOZZLE in controlling Arabidopsis ovule development. Cell Research, 25, 121–134.

    Article  CAS  PubMed  Google Scholar 

  • Widiez, T., et al. (2011). High nitrogen insensitive 9 (HNI9)-mediated systemic repression of root NO 3- uptake is associated with changes in histone methylation. Proceedings of the National Academy of Sciences of the United States of America, 108, 13329–13334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, L., & Yang, H. Q. (2010). CRYPTOCHROME 1 is implicated in promoting R protein-mediated plant resistance to pseudomonas syringae in arabidopsis. Molecular Plant, 3, 539–548.

    Article  CAS  PubMed  Google Scholar 

  • Wu, K., Malik, K., Tian, L., Brown, D., & Miki, B. (2000). Functional analysis of a RPD3 histone deacetylase homologue in Arabidopsis thaliana. Plant Molecular Biology, 44, 167–176.

    Article  CAS  PubMed  Google Scholar 

  • Wu, C. Y., et al. (2008). Brassinosteroids regulate grain filling in rice. Plant Cell, 20, 2130–2145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada, K., et al. (2003). Empirical analysis of transcriptional activity in the Arabidopsis genome. Science, 302, 842–846.

    Article  CAS  PubMed  Google Scholar 

  • Yasin, N. A., et al. (2017). Imperative roles of halotolerant plant growth-promoting rhizobacteria and kinetin in improving salt tolerance and growth of black gram (Phaseolus mungo). Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-017-0761-0

  • Yasin, N. A., et al. (2018a). Halotolerant plant-growth promoting rhizobacteria modulate gene expression and osmolyte production to improve salinity tolerance and growth in Capsicum annum L. Environmental Science and Pollution Research, 25, 23236–23250.

    Article  CAS  PubMed  Google Scholar 

  • Yasin, N. A., et al. (2018b). Role of Acinetobacter sp. CS9 in improving growth and phytoremediation potential of Catharanthus longifolius under cadmium stress. Polish Journal of Environmental Studies, 28, 435–443.

    Google Scholar 

  • Yasin, N. A., et al. (2018c). The beneficial role of potassium in cd-induced stress alleviation and growth improvement in Gladiolus grandiflora L. International Journal of Phytoremediation, 20.

    Google Scholar 

  • Yasin, N. A., et al. (2018d). Effect of Bacillus fortis 162 on growth, oxidative stress tolerance and phytoremediation potential of Catharanthus roseus under chromium stress. International Journal of Agriculture and Biology, 20, 1513–1522.

    CAS  Google Scholar 

  • Yasin, N. A. N. A., et al. (2018e). Imperative roles of halotolerant plant growth-promoting rhizobacteria and kinetin in improving salt tolerance and growth of black gram (Phaseolus mungo). Environmental Science and Pollution Research, 25, 4491–4505.

    Article  CAS  PubMed  Google Scholar 

  • Yasin, N. A., et al. (2018f). The beneficial role of potassium in Cd-induced stress alleviation and growth improvement in Gladiolus grandiflora L. International Journal of Phytoremediation, 20, 274–283.

    Article  CAS  PubMed  Google Scholar 

  • Yasin, N. A., et al. (2019). Effect of enterobacter sp. CS2 and EDTA on the phytoremediation of ni-contaminated soil by Impatiens balsamina. Polish Journal of Environmental Studies, 28, 425–433.

    CAS  Google Scholar 

  • Yin, Y., et al. (2002). BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell, 109, 181–191.

    Article  CAS  PubMed  Google Scholar 

  • Yin, Y., et al. (2005). A new class of transcription factors mediates Brassinosteroid-regulated gene expression in Arabidopsis. Cell, 120, 249–259.

    Article  CAS  PubMed  Google Scholar 

  • Yousaf, A., Qadir, A., Anjum, T., & Ahmad, A. (2015a). Transcriptional modulation of squalene synthase genes in barley treated with PGPR. Frontiers in Plant Science, 6.

    Google Scholar 

  • Yousaf, A., Qadir, A., Anjum, T., & Ahmad, A. (2015b). Identification of microbial metabolites elevating vitamin contents in barley seeds. Journal of Agricultural and Food Chemistry, 63, 7304–7310.

    Article  CAS  PubMed  Google Scholar 

  • Yu, X., Liu, H., Klejnot, J., & Lin, C. (2010). The Cryptochrome blue light receptors. The Arabidopsis Book, 8, e0135.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu, X., et al. (2011). A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. The Plant Journal, 65, 634–646.

    Article  CAS  PubMed  Google Scholar 

  • Yusuf, M., Khan, T. A., & Fariduddin, Q. (2016). Responses of photosynthesis, stress markers and antioxidants under aluminium, salt and combined stresses in wheat cultivars. Cogent Food & Agriculture, 2.

    Google Scholar 

  • Zaheer, M. M., et al. (2017). Amelioration of cadmium stress in gladiolus (Gladiolus grandiflora L.) by application of potassium and silicon. Journal of Plant Nutrition. https://doi.org/10.1080/01904167.2017.1385808

  • Zaheer, M. M. M. M., et al. (2018). Amelioration of cadmium stress in gladiolus (Gladiolus grandiflora L.) by application of potassium and silicon. Journal of Plant Nutrition, 41, 461–476.

    Article  CAS  Google Scholar 

  • Zhang, S., Cai, Z., & Wang, X. (2009a). The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proceedings of the National Academy of Sciences of the United States of America, 106, 4543–4548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, L. Y., et al. (2009b). Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. Plant Cell, 21, 3767–3780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Guo, X., & Dong, J. (2016a). Phosphorylation of the polarity protein BASL differentiates asymmetric cell fate through MAPKs and SPCH. Current Biology, 26, 2957–2965.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Liu, J., Chai, J., & Xing, D. (2016b). Mitogen-activated protein kinase 6 mediates nuclear translocation of ORE3 to promote ORE9 gene expression in methyl jasmonate-induced leaf senescence. Journal of Experimental Botany, 67, 83–94.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, B., et al. (2016c). OsBRI1 activates BR signaling by preventing binding between the TPR and kinase domains of OsBSK3 via phosphorylation. Plant Physiology, 170, 1149–1161.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, B., et al. (2019). EMS1 and BRI1 control separate biological processes via extracellular domain diversity and intracellular domain conservation. Nature Communications, 10, 4165.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou, A., Wang, H., Walker, J. C., & Li, J. (2004). BRL1, a leucine-rich repeat receptor-like protein kinase, is functionally redundant with BRI1 in regulating Arabidopsis brassinosteroid signaling. The Plant Journal, 40, 399–409.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J. Y., et al. (2017). The F-box protein KIB1 mediates Brassinosteroid-induced inactivation and degradation of GSK3-like kinases in Arabidopsis. Molecular Cell, 66, 648.e4–657.e4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, A., Shahzadi, I., Akram, W., Yasin, N.A., Khan, W.U., Wu, T. (2022). Plant Proteomics and Metabolomics Investigations in Regulation of Brassinosteroid. In: Khan, M.T.A., Yusuf, M., Qazi, F., Ahmad, A. (eds) Brassinosteroids Signalling. Springer, Singapore. https://doi.org/10.1007/978-981-16-5743-6_2

Download citation

Publish with us

Policies and ethics