Skip to main content

Role of Brassinosteroids in Protein Folding Under High-Temperature Stress

  • Chapter
  • First Online:
Brassinosteroids Signalling

Abstract

Brassinosteroids (BRs) are a cluster of naturally up plant steroidal compounds with extensive range of biological action that proffer the exclusive opportunity of growing crop productivity through both altering plant metabolism and defensive plants from environmental cues. Research on BRs, assisted by the new progress in knowledge, has interpreted their function not only in crop development but also in crop adaptation under heat stress conditions. Existing reports point out that BRs play important functioning in plant’s tolerance against heat stress, resultant in proficient stress supervision under unfavorable conditions. Due to their characteristic and resourceful purpose, BRs are usually used to enhance plant value and productivity. However, how heat stress could function in protein folding throughout BR act is badly tacit. This chapter focuses on the present position of our considerate about the function of BRs in protein folding in elevated temperature stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Khatib, K., & Paulsen, G. M. (1989). Enhancement of thermal injury to photosynthesis in wheat plants and thylakoids by high light intensity. Plant Physiology, 90, 1041–1048.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bajguz, A., & Tretyn, A. (2003). The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry, 62, 1027–1046.

    CAS  PubMed  Google Scholar 

  • Bita, C., & Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: Scientifc fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4, 273. https://doi.org/10.3389/fpls.2013.00273

    Article  PubMed  PubMed Central  Google Scholar 

  • Chu, X., Wang, C., Chen, X., Lu, W., Li, H., Wang, X., Hao, L., & Guo, X. (2015). The cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana. PLoS One, 10, 0143022.

    Google Scholar 

  • Clouse, S. D. (2011). Brassinosteroid signal transduction: From receptor kinase activation to transcriptional networks regulating plant development. Plant Cell, 23, 1219–1230.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clouse, S. D. (2015). A history of brassinosteroid research from 1970 through 2005: Thirty-five years of phytochemistry, physiology, genes, and mutants. Journal of Plant Growth Regulation, 34(4), 828–844.

    CAS  Google Scholar 

  • Clouse, S. D., Langford, M., & McMorris, T. C. (1996). A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiology, 111, 671–678.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, J. X., Zhou, Y. H., Ding, J. G., Xia, X. J., Shi, K., Chen, S. C., Asami, T., Chen, Z., & Yu, J. Q. (2011). Role of nitric oxide in hydrogen peroxide-dependent induction of abiotic stress tolerance by brassinosteroids in cucumber. Plant, Cell & Environment, 34, 347–358.

    CAS  Google Scholar 

  • Dhaubhadel, S., Browning, K. S., Gallie, D. R., & Krishna, P. (2002). Brassinosteroid functions to protect the translational machinery and heat shock protein synthesis following thermal stress. The Plant Journal, 29(6), 681–691.

    CAS  PubMed  Google Scholar 

  • Divi, U. K., & Krishna, P. (2009). Brassinosteroid: A biotechnological target for enhancing crop yield and stress tolerance. Nature Biotechnology, 26, 131–136.

    CAS  Google Scholar 

  • Evans, L. T., & Fischer, R. A. (1999). Yield potential: It’s definition, measurement, and significance. Crop Science, 39, 1544–1551.

    Google Scholar 

  • Faizan, M., Faraz, A., & Hayat, S. (2018). Dose dependent response of epibrassinolide on the growth, photosynthesis and antioxidant system of tomato plants. Indian Journal of Horticulture, 8(2/3), 68–76.

    Google Scholar 

  • Fang, P., Yan, M., Chi, C., Wang, M., Zhou, Y. H., Zhou, J., Shi, K., Xia, X., Foyer, C. H., & Yu, J. (2019). Brassinosteroids act as a positive regulator of photoprotection in response to chilling stress. Plant Physiology, 180, 2061–2076. https://doi.org/10.1104/pp.19.00088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory, L. E., & Mandava, N. B. (1982). The activity and interaction of brassinolide and gibberellic acid in mung bean epicotyls. Physiologia Plantarum, 33, 1399–3054.

    Google Scholar 

  • Guerriero, G., Legay, S., & Hausman, J. F. (2014). Alfalfa cellulose Synthase gene expression under abiotic stress: A Hitchhiker’s guide to RT-qPCR normalization. PLoS One, 9, e103808.

    PubMed  PubMed Central  Google Scholar 

  • Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4–10.

    Google Scholar 

  • Kagale, S., Divi, U. K., Krochko, J. E., Keller, W. A., & Krishna, P. (2007). Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta, 225, 353–364.

    CAS  PubMed  Google Scholar 

  • Kim, T. W., & Wang, Z. Y. (2010). Brassinosteroid signal transduction from receptor kinases to transcription factors. Annual Review of Plant Biology, 61, 681–704.

    CAS  PubMed  Google Scholar 

  • Kim, T. W., Guan, S., Sun, Y., Deng, Z., & Tang, W. (2009). Brassinosteroid signal transduction from cell surface receptor kinases to nuclear transcription factors. Nature Cell Biology, 11, 1254–1260.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kjaergaard, M., Teilum, K., & Poulsen, F. M. (2010). Conformational selection in the molten globule state of the nuclear coactivator binding domain of CBP. Proceedings of the National Academy of Sciences of the United States of America, 107(28), 12535–12540.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, M., Sirhindi, G., Bhardwaj, R., Kumar, S., & Jain, G. (2010). Effect of exogenous H2O2 on antioxidant enzymes of Brassica juncea L. seedlings in relation to 24-epibrassinolide under chilling stress. Indian Journal of Biochemistry & Biophysics, 47, 378–382.

    CAS  Google Scholar 

  • Li, J., & Nam, K. H. (2002). Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science, 295, 1299–1301.

    CAS  PubMed  Google Scholar 

  • Mandava, N. B. (1988). Plant growth promoting brassinosteroids. Annual Review of Plant Physiology and Plant Molecular Biology, 39, 23–52.

    CAS  Google Scholar 

  • Mandava, B. N., Sasse, J. M., & Yopp, J. H. (1981). Brassinolide, a growth promoting steroidal lactone.2. Activity in selected gibberellin and cytokinin bioassays. Plant Physiology, 53, 453–461.

    CAS  Google Scholar 

  • McLoughlin, F., Basha, E., Fowler, M. E., Kim, M., Bordowitz, J., Katiyar-Agarwal, S., & Vierling, E. (2016). Class I and II small heat-shock proteins protect protein translation factors during heat stress. Plant Physiology, 172, 1221–1236.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Momcilovic, I., & Ristic, Z. (2007). Expression of chloroplast protein synthesis elongation factor, EF-Tu, in two lines of maize with contrasting tolerance to heat stress during early stages of plant development. Journal of Plant Physiology, 164, 90–99.

    CAS  PubMed  Google Scholar 

  • Nolan, T., Vukasinovic, N., Liu, D., Russinova, E., & Yin, Y. (2019). Brassinosteroids: Multi-dimensional regulators of plant growth, development, and stress responses. The Plant Cell, 32, 295–318. https://doi.org/10.1105/tpc.19.00335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pain, R. H. (2000). Mechanisms of protein folding. Frontiers in molecular biology. Oxford University Press.

    Google Scholar 

  • Qu, A. L., Ding, Y. F., Jiang, Q., & Zhu, C. (2013). Molecular mechanisms of the plant heat stress response. Biochemical and Biophysical Research Communications, 432, 203–207.

    CAS  PubMed  Google Scholar 

  • Russinova, E., Borst, J. W., Kwaaitaal, M., Caño-Delgado, A., Yin, Y., Chory, J., & De Vries, S. C. (2004). Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1). Plant Cell, 16, 3216–3229.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sadana, A., & Vo-Dinh, T. (2001). Biomedical implications of protein folding and misfolding. Biotechnology and Applied Biochemistry, 33, 7–16.

    CAS  PubMed  Google Scholar 

  • Sadura, I., Libik-Konieczny, M., Jurczyk, B., Gruszka, D., & Janeczko, A. (2020). HSP transcript and protein accumulation in brassinosteroid barley mutants acclimated to low and high temperatures. International Journal of Molecular Sciences, 21, 1889.

    CAS  PubMed Central  Google Scholar 

  • Sasse, J. M. (1985). The place of brassinolide in the sequential response to plant growth regulators in elongating tissue. Plant Physiology, 63, 303–308.

    CAS  Google Scholar 

  • Shimada, Y., Fujioka, S., Miyauchi, N., Kushiro, M., Takatsuto, S., Nomura, T., Yokota, T., Kamiya, Y., Bishop, G. J., & Yoshida, S. (2001). Brassinosteroid-6- oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis. Plant Physiology, 126, 770–779.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, I., & Shono, M. (2005). Physiological and molecular effects of 24-Epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regulation, 47, 111–119.

    CAS  Google Scholar 

  • Sirhindi, G., Kumar, S., Bhardwaj, R., & Kumar, M. (2009). Effects of 24-epibrassinolide and 28- homobrassinolide on the growth and antioxidant enzyme activities in the seedlings of Brassica juncea L. Physiology and Molecular Biology of Plants, 15(4), 335–341.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sirhindi, G., Kumar, M., Bhardwaj, R., Kumar, S., & Pradhan, S. K. (2011). Effect of 24-epibrassinolide on activity of antioxidant enzymes in Brassica juncea L. under H2O2 stress. Indian Journal of Plant Physiology, 16(1), 68–71.

    Google Scholar 

  • Tian, Y., Fan, M., Qin, Z., Lv, H., Wang, M., Zhang, Z., Zhou, W., Zhao, N., Li, X., Han, C., Ding, Z., Wang, W., Wang, Z. Y., & Bai, M. Y. (2018). Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor. Nature Communications, 9, 1–13.

    Google Scholar 

  • Uozu, S., Tanaka-Ueguchi, M., Kitano, H., Hattori, K., & Matsuoka, M. (2000). Characterization of XET-related genes of Rice. Plant Physiology, 122, 853–860.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vriet, C., Russinova, E., & Reuzeau, C. (2012). Boosting crop yields with plant steroids. Plant Cell, 3, 842–857.

    Google Scholar 

  • Wang, X., & Chory, J. (2006). Brassinsoteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science, 313, 1118–1122.

    CAS  PubMed  Google Scholar 

  • Wang, Z. Y., Nakano, T., Gendron, J., He, J., Chen, M., Vafeados, D., Yang, Y., Fujioka, S., Yoshida, S., Asami, T., & Chory, J. (2002). Nuclear-localized BZR1 mediates brassinosteroid induced growth and feedback suppression of brassinosteroid biosynthesis. Developmental Cell, 2, 505–513.

    CAS  PubMed  Google Scholar 

  • Wang, Y., Cao, J. J., Wang, K. X., Xia, X. J., Shi, K., Zhou, Y. H., Yu, J. Q., & Zhou, J. (2018). BZR1 mediates brassinosteroid-induced autophagy and nitrogen starvation tolerance in tomato. Plant Physiology, 179, 671–685. https://doi.org/10.1104/pp.18.01028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, X. J., Fang, P. P., Guo, X., Qian, X. J., Zhou, J., Shi, K., Zhou, Y. H., & Yu, J. Q. (2018). Brassinosteroid-mediated apoplastic H2O2-glutaredoxin 12/14 cascade regulates antioxidant capacity in response to chilling in tomato. Plant, Cell & Environment, 41(5), 1052–1064.

    CAS  Google Scholar 

  • Xie, L., Yang, C., & Wang, X. (2011). Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis. Journal of Experimental Botany, 62, 4495–4506.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yopp, J. H., Mandava, N. B., & Sasse, J. M. (1981). Brassinolide, a growth promoting steroidal lactone.1. Activity in selected auxin bioassays. Plant Physiology, 53, 445–452.

    CAS  Google Scholar 

  • Yu, X., Li, L., Guo, M., Chory, J., & Yin, Y. (2008). Modulation of brassinosteroid-regulated gene expression by Jumonji domain-containing proteins ELF6 and REF6 in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 105, 7618–7623.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Xu, Y., Zhang, J., Wu, J., & Shi, Y. (2005). Structural and dynamic characterization of the acid-unfolded state of hUBF HMG box 1 provides clues for the early events in protein folding. Biochemistry, 44(22), 8117–8125.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Faizan, M., Yu, F., Rajput, V.D., Minkina, T., Hayat, S. (2022). Role of Brassinosteroids in Protein Folding Under High-Temperature Stress. In: Khan, M.T.A., Yusuf, M., Qazi, F., Ahmad, A. (eds) Brassinosteroids Signalling. Springer, Singapore. https://doi.org/10.1007/978-981-16-5743-6_15

Download citation

Publish with us

Policies and ethics