Skip to main content

Glyphosate: Is Brassinosteroids Application a Remedy?

  • Chapter
  • First Online:
Brassinosteroids Signalling

Abstract

Pesticides are mainly used to protect crop plants from pests and pest transmitted diseases. However, the active ingredients of the pesticides are also a source of crop toxicity and food contamination. The persistent nature of the chemicals makes them stable against environmental degradation process, and they continue to be in the form of pesticide residues in different plant tissues. In plants, glyphosate has been the best commonly used herbicide. It has a proven record of disturbing plant physiological processes and cell metabolism. Plant biological practices such as photosynthesis, carbon use, mineral diet, and oxidative trials have been exaggerated, and plant–microbe interactions have been interrupted by the pesticide. Despite the less studied detail of aminomethylphosphonic acid (AMPA), it was displayed to influence chlorophyll biosynthesis and to cause decline of plant development. In addition, brassinosteroids (BRs) are well-known for their defensive function in plants in numerous abiotic stresses, such as low temperatures, salt, heavy metals, drought, and pesticides. By triggering the antioxidant defense mechanism, BRs improve pesticide harmfulness in whole plants. In addition, BRs also increase pesticide degradation, which contributes to a decrease in residual pesticides in plant portions. Therefore, the current study offers to reveal the function of BRs in the management of glyphosate, and current research illuminates the detoxification of BR-regulated glyphosate in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas, H. M. K., et al. (2020). Heterologous WRKY and NAC transcription factors triggered resistance in Nicotiana benthamiana. Journal of King Saud University: Science, 32, 3005–3013.

    Google Scholar 

  • Ahmad, A., Shafique, S., & Shafique, S. (2014). Intracellular interactions involved in induced systemic resistance in tomato. Scientia Horticulturae (Amsterdam), 176, 127–133.

    CAS  Google Scholar 

  • Ahmad, A., et al. (2020a). Metabolic and proteomic perspectives of augmentation of nutritional contents and plant defense in vigna unguiculata. Biomolecules, 10, 224.

    CAS  PubMed Central  Google Scholar 

  • Ahmad, A., et al. (2020b). Dopamine alleviates hydrocarbon stress in Brassica oleracea through modulation of physio-biochemical attributes and antioxidant defense systems. Chemosphere, 270, 128633. https://doi.org/10.1016/j.chemosphere.2020.128633

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, A., et al. (2021). Synergistic effects of nitric oxide and silicon on promoting plant growth, oxidative stress tolerance and reduction of arsenic uptake in Brassica juncea. Chemosphere, 262, 128384.

    CAS  PubMed  Google Scholar 

  • Akram, W., et al. (2020). Liquiritin elicitation can increase the content of medicinally important glucosinolates and phenolic compounds in Chinese kale plants. Journal of the Science of Food and Agriculture, 100, 1616–1624.

    CAS  PubMed  Google Scholar 

  • Alcántara-de la Cruz, R., et al. (2019). Management of glyphosate-resistant weeds in Mexican citrus groves: Chemical alternatives and economic viability. Plants, 8, 325.

    PubMed Central  Google Scholar 

  • Ali, B. (2017). Practical applications of brassinosteroids in horticulture-some field perspectives. Scientia Horticulturae (Amsterdam), 225, 15–21.

    CAS  Google Scholar 

  • Anwar, A., et al. (2018). The physiological and molecular mechanism of brassinosteroid in response to stress: A review. Biological Research, 51, 46.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baghel, M., et al. (2019). Pleiotropic influences of brassinosteroids on fruit crops: A review. Plant Growth Regulation, 87, 375–388.

    CAS  Google Scholar 

  • Basu, S., & Vasudeva Rao, Y. (2020). Environmental effects and management strategies of the herbicides. https://doi.org/10.23910/1.2020.2069d

  • Bhateria, R., & Jain, D. (2016). Water quality assessment of lake water: A review. Sustainable Water Resources Management, 2, 161–173.

    Google Scholar 

  • Boano, F., et al. (2014). Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Reviews of Geophysics, 52, 603–679.

    Google Scholar 

  • Brzezowski, P., et al. (2016). Mg chelatase in chlorophyll synthesis and retrograde signaling in Chlamydomonas reinhardtii: CHLI2 cannot substitute for CHLI1. Journal of Experimental Botany, 67, 3925–3938.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Busse, M. D., Ratcliff, A. W., Shestak, C. J., & Powers, R. F. Glyphosate toxicity and the effects of long-term vegetation control on soil microbial communities. www.elsevier.com/locate/soilbio

  • Contador, C. A., Lo, S.-K., Chan, S. H. J., & Lam, H.-M. (2020). Metabolic analyses of nitrogen fixation in the soybean microsymbiont Sinorhizobium fredii using constraint-based modeling. https://doi.org/10.1128/mSystems.00516-19

  • De María, N., et al. (2006). New insights on glyphosate mode of action in nodular metabolism: Role of shikimate accumulation. Journal of Agricultural and Food Chemistry, 54, 2621–2628.

    PubMed  Google Scholar 

  • Duke, S. O., et al. (2012). Glyphosate effects on plant mineral nutrition, crop rhizosphere microbiota, and plant disease in glyphosate-resistant crops. Journal of Agricultural and Food Chemistry, 60, 10375–10397.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fariduddin, Q., Yusuf, M., Ahmad, I., & Ahmad, A. (2014a). Brassinosteroids and their role in response of plants to abiotic stresses. Biologia Plantarum, 58, 9–17.

    CAS  Google Scholar 

  • Fariduddin, Q., Khan, T. A., & Yusuf, M. (2014b). Hydrogen peroxide mediated tolerance to copper stress in the presence of 28-homobrassinolide in Vigna radiata. Acta Physiologiae Plantarum, 36, 2767–2778.

    CAS  Google Scholar 

  • Fariduddin, Q., Ahmed, M., Mir, B. A., Yusuf, M., & Khan, T. A. (2015). 24-Epibrassinolide mitigates the adverse effects of manganese induced toxicity through improved antioxidant system and photosynthetic attributes in Brassica juncea. Environmental Science and Pollution Research, 22, 11349–11359.

    CAS  PubMed  Google Scholar 

  • Fartyal, D., et al. (2018). Co-expression of P173S mutant Rice EPSPS and igrA genes results in higher glyphosate tolerance in transgenic Rice. Frontiers in Plant Science, 9, 144.

    PubMed  PubMed Central  Google Scholar 

  • Fernández-Escalada, M., Zulet-González, A., Gil-Monreal, M., Royuela, M., & Zabalza, A. (2019). Physiological performance of glyphosate and imazamox mixtures on Amaranthus palmeri sensitive and resistant to glyphosate. Scientific Reports, 9, 1–14.

    Google Scholar 

  • Fu, H. Y., et al. (2017). Redesigning the QA binding site of photosystem II allows reduction of exogenous quinones. Nature Communications, 8, 1–12.

    Google Scholar 

  • Gaupp-Berghausen, M., Hofer, M., Rewald, B., & Zaller, J. G. (2015). Glyphosate-based herbicides reduce the activity and reproduction of earthworms and lead to increased soil nutrient concentrations. Scientific Reports, 5, 12886.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes, M. P., et al. (2014). Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: An overview. Journal of Experimental Botany, 65, 4691–4703.

    CAS  PubMed  Google Scholar 

  • Gomes, M. P., et al. (2017). Glyphosate-dependent inhibition of photosynthesis in willow. Frontiers in Plant Science, 8, 207.

    PubMed  PubMed Central  Google Scholar 

  • Grotjohann, N., Huang, Y., & Kowallik, W. (2001). Tricarboxylic acid cycle enzymes of the ectomycorrhizal basidiomycete, Suillus bovinus. Zeitschrift fur Naturforschung – Section C Journal of Biosciences, 56, 334–342.

    CAS  Google Scholar 

  • Guo, H., Li, L., Aluru, M., Aluru, S., & Yin, Y. (2013). Mechanisms and networks for brassinosteroid regulated gene expression. Current Opinion in Plant Biology, 16, 545–553.

    CAS  PubMed  Google Scholar 

  • Hafeez, M., et al. (2019). Gossypol-induced fitness gain and increased resistance to deltamethrin in beet armyworm, Spodoptera exigua (Hübner). Pest Management Science, 75, 683–693.

    CAS  PubMed  Google Scholar 

  • Hage-Ahmed, K., Rosner, K., & Steinkellner, S. (2019). Arbuscular mycorrhizal fungi and their response to pesticides. Pest Management Science, 75, 583–590.

    CAS  PubMed  Google Scholar 

  • Hayat, S., Ali, B., Hasan, S. A., & Ahmad, A. (2007). Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environmental and Experimental Botany, 60, 33–41.

    CAS  Google Scholar 

  • Hayat, S., Hasan, S. A., Hayat, Q., & Ahmad, A. (2010). Brassinosteroids protect Lycopersicon esculentum from cadmium toxicity applied as shotgun approach. Protoplasma, 239, 3–14.

    CAS  PubMed  Google Scholar 

  • Hongsibsong, S., et al. (2020). Monitoring of the organophosphate pesticide chlorpyrifos in vegetable samples from local markets in northern Thailand by developed immunoassay. International Journal of Environmental Research and Public Health, 17, 1–14.

    Google Scholar 

  • Hove-Jensen, B., Zechel, D. L., & Jochimsen, B. (2014). Utilization of glyphosate as phosphate source: Biochemistry and genetics of bacterial carbon-phosphorus Lyase. Microbiology and Molecular Biology Reviews, 78, 176–197.

    PubMed  PubMed Central  Google Scholar 

  • Huntscha, S., et al. (2018). Seasonal dynamics of glyphosate and AMPA in Lake Greifensee: Rapid microbial degradation in the Epilimnion during summer. Environmental Science & Technology, 52, 4641–4649.

    CAS  Google Scholar 

  • Hussain, M., Khan, T. A., Yusuf, M., & Fariduddin, Q. (2019). Silicon-mediated role of 24-epibrassinolide in wheat under high-temperature stress. Environmental Science and Pollution Research, 26, 17163–17172.

    CAS  PubMed  Google Scholar 

  • Intayoung, U., Wunnapuk, K., Kohsuwan, K., Sapbamrer, R., & Khacha-ananda, S. (2020). Effect of occupational exposure to herbicides on oxidative stress in sprayers. Safety and Health at Work. https://doi.org/10.1016/j.shaw.2020.09.011

  • Jan, S., Parween, T., Siddiqi, T. O., & Mahmooduzzafar, A. P. (2012). Anti-oxidant modulation in response to gamma radiation induced oxidative stress in developing seedlings of Psoralea corylifolia L. Journal of Environmental Radioactivity, 113, 142–149.

    CAS  PubMed  Google Scholar 

  • Jiroutova, P., Oklestkova, J., & Strnad, M. (2018). Crosstalk between brassinosteroids and ethylene during plant growth and under abiotic stress conditions. International Journal of Molecular Sciences, 19, 3283.

    PubMed Central  Google Scholar 

  • Kanissery, R., Gairhe, B., Kadyampakeni, D., Batuman, O., & Alferez, F. (2019). Glyphosate: Its environmental persistence and impact on crop health and nutrition. Plants, 8, 499.

    CAS  PubMed Central  Google Scholar 

  • Khan, M., et al. (2013). Brassinosteroid-regulated GSK3/shaggy-like kinases phosphorylate mitogen-activated protein (MAP) kinase kinases, which control stomata development in Arabidopsis thaliana. The Journal of Biological Chemistry, 288, 7519–7527.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, T. A., Yusuf, M., & Fariduddin, Q. (2015a). Seed treatment with H2O2 modifies net photosynthetic rate and antioxidant system in mung bean (Vigna radiata L. Wilczek) plants. Israel Journal of Plant Sciences, 62, 167–175.

    Google Scholar 

  • Khan, T. A., Fariduddin, Q., & Yusuf, M. (2015b). Lycopersicon esculentum under low temperature stress: An approach toward enhanced antioxidants and yield. Environmental Science and Pollution Research, 22, 14178–14188.

    CAS  PubMed  Google Scholar 

  • Khan, M. S., Khan, M. A., & Ahmad, D. (2016). Assessing utilization and environmental risks of important genes in plant abiotic stress tolerance. Frontiers in Plant Science, 7, 792.

    PubMed  PubMed Central  Google Scholar 

  • Khan, W. U., Ahmad, S. R., Yasin, N. A., Ali, A., & Ahmad, A. (2017a). Effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the phytoremediation potential of Catharanthus roseus (L.) in cu and Pb-contaminated soils. International Journal of Phytoremediation, 19, 514–521.

    PubMed  Google Scholar 

  • Khan, W. U., et al. (2017b). Application of bacillus megaterium MCR-8 improved phytoextraction and stress alleviation of nickel in Vinca rosea. International Journal of Phytoremediation, 19, 813–824.

    CAS  PubMed  Google Scholar 

  • Khan, W. U., et al. (2018a). Role of Burkholderia cepacia CS8 in cd-stress alleviation and phytoremediation by Catharanthus roseus. International Journal of Phytoremediation, 20, 581–592.

    PubMed  Google Scholar 

  • Khan, T. A., Yusuf, M., & Fariduddin, Q. (2018b). Hydrogen peroxide in regulation of plant metabolism: Signalling and its effect under abiotic stress. Photosynthetica, 56, 1237–1248.

    CAS  Google Scholar 

  • Khan, T. A., et al. (2019a). Proteomic and physiological assessment of stress sensitive and tolerant variety of tomato treated with brassinosteroids and hydrogen peroxide under low-temperature stress. Food Chemistry, 289, 500–511.

    CAS  PubMed  Google Scholar 

  • Khan, A., et al. (2019b). Changes in leaf structural and functional characteristics when changing planting density at different growth stages alters cotton lint yield under a new planting model. Agronomy, 9, 859.

    CAS  Google Scholar 

  • Kielak, E., Sempruch, C., Mioduszewska, H., Klocek, J., & LeszczyÅ„ski, B. (2011). Phytotoxicity of roundup ultra 360 SL in aquatic ecosystems: Biochemical evaluation with duckweed (Lemna minor L.) as a model plant. Pesticide Biochemistry and Physiology, 99, 237–243.

    CAS  Google Scholar 

  • Kondo, Y., et al. (2016). Vascular cell induction culture system using arabidopsis leaves (VISUAL) reveals the sequential differentiation of sieve element-like cells. Plant Cell, 28, 1250–1262.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krenchinski, F. H., et al. (2017). Glyphosate affects chlorophyll, photosynthesis and water use of four Intacta RR2 soybean cultivars. Acta Physiologiae Plantarum, 39, 1–13.

    CAS  Google Scholar 

  • Latif, A., et al. (2015). Herbicide-resistant cotton (Gossypium hirsutum) plants: An alternative way of manual weed removal. BMC Research Notes, 8, 453.

    PubMed  PubMed Central  Google Scholar 

  • Leino, L., et al. (2020). Classification of the glyphosate target enzyme (5-enolpyruvylshikimate-3-phosphate synthase). bioRxiv. https://doi.org/10.1101/2020.05.27.118265

  • Li, G., et al. (2021). Hydrogen sulfide mitigates cadmium induced toxicity in Brassica rapa by modulating physiochemical attributes, osmolyte metabolism and antioxidative machinery. Chemosphere, 263, 127999.

    CAS  PubMed  Google Scholar 

  • Lindström, K., & Mousavi, S. A. (2020). Effectiveness of nitrogen fixation in rhizobia. Microbial Biotechnology, 13, 1314–1335.

    PubMed  Google Scholar 

  • Martinez, D. A., Loening, U. E., & Graham, M. C. (2018). Impacts of glyphosate-based herbicides on disease resistance and health of crops: A review. Environmental Sciences Europe, 30, 1–14.

    CAS  Google Scholar 

  • Mertens, M., Höss, S., Neumann, G., Afzal, J., & Reichenbecher, W. (2018). Glyphosate, a chelating agent – Relevant for ecological risk assessment? Environmental Science and Pollution Research, 25, 5298–5317.

    CAS  PubMed  Google Scholar 

  • Mir, R., Jallu, S., & Singh, T. P. (2015a). The shikimate pathway: Review of amino acid sequence, function and three-dimensional structures of the enzymes. Critical Reviews in Microbiology, 41, 172–189.

    CAS  PubMed  Google Scholar 

  • Mir, B. A., Khan, T. A., & Fariduddin, Q. (2015b). 24-epibrassinolide and spermidine modulate photosynthesis and antioxidant systems in Vigna radiata under salt. International Journal of Advanced Research, 3, 592–608.

    CAS  Google Scholar 

  • Mohammad, Y., Renu, B., & Andrzej, B. (2019). Brassinosteroids: Plant growth and development. Springer. https://doi.org/10.1007/978-981-13-6058-9

    Book  Google Scholar 

  • Mollaee, M., Matloob, A., Mobli, A., Thompson, M., & Chauhan, B. S. (2020). Response of glyphosate-resistant and susceptible biotypes of Echinochloa colona to low doses of glyphosate in different soil moisture conditions. PLoS One, 15, e0233428.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naz, F. S., Yusuf, M., Khan, T. A., Fariduddin, Q., & Ahmad, A. (2015). Low level of selenium increases the efficacy of 24-epibrassinolide through altered physiological and biochemical traits of Brassica juncea plants. Food Chemistry, 185, 441–448.

    CAS  PubMed  Google Scholar 

  • Nazir, F., Fariduddin, Q., & Khan, T. A. (2020). Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. Chemosphere, 252, 126486.

    CAS  PubMed  Google Scholar 

  • Nazir, F., Fariduddin, Q., Hussain, A., & Khan, T. A. (2021). Brassinosteroid and hydrogen peroxide improve photosynthetic machinery, stomatal movement, root morphology and cell viability and reduce cu- triggered oxidative burst in tomato. Ecotoxicology and Environmental Safety, 207, 111081.

    CAS  PubMed  Google Scholar 

  • Nolan, T. M., Vukasinović, N., Liu, D., Russinova, E., & Yin, Y. (2020). Brassinosteroids: Multidimensional regulators of plant growth, development, and stress responses. Plant Cell, 32, 298–318.

    Google Scholar 

  • Pollegioni, L., Schonbrunn, E., & Siehl, D. (2011). Molecular basis of glyphosate resistance - different approaches through protein engineering. FEBS Journal, 278, 2753–2766.

    CAS  PubMed  Google Scholar 

  • Powell, J. R., & Swanton, C. J. (2008). A critique of studies evaluating glyphosate effects on diseases associated with fusarium spp. Weed Research, 48, 307–318.

    CAS  Google Scholar 

  • Rady, M. M. (2011). Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Scientia Horticulturae (Amsterdam), 129, 232–237.

    CAS  Google Scholar 

  • Reddy, K. N., Rimando, A. M., & Duke, S. O. (n.d.-a). Aminomethylphosphonic acid, a metabolite of glyphosate, causes injury in glyphosate-treated. Glyphosate-Resistant Soybean. https://doi.org/10.1021/jf049605v

  • Reddy, K. N., et al. (n.d.-b). Biological responses to glyphosate drift from aerial application in non-glyphosate-resistant corn. https://doi.org/10.1002/ps.1996

  • Rolando, C. A., Baillie, B. R., Thompson, D. G., & Little, K. M. (2017). The risks associated with glyphosate-based herbicide use in planted forests. Forests, 8, 208.

    Google Scholar 

  • Samsel, A., & Seneff, S. (2013). Glyphosate’s suppression of cytochrome P450 enzymes and amino acid biosynthesis by the gut microbiome: Pathways to modern diseases. Entropy, 15, 1416–1463.

    CAS  Google Scholar 

  • Samsel, A., & Seneff, S. (2015). Glyphosate, pathways to modern diseases III: Manganese, neurological diseases, and associated pathologies. Surgical Neurology International, 6.

    Google Scholar 

  • Saunders, L., & Pezeshki, R. (2015). Glyphosate in runoff waters and in the root-zone: A review. Toxics, 3, 462–480.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schönbrunn, E., et al. (2001). Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proceedings of the National Academy of Sciences of the United States of America, 98, 1376–1380.

    PubMed  PubMed Central  Google Scholar 

  • Shafique, S., Akram, W., Anjum, T., Ahmad, A., & Shafique, S. (2014a). Comparative studies on phytochemistry, antibacterial and antifungal properties of Alstonia scholaris and Millettia pinnata. Australasian Plant Disease Notes, 9, 132.

    Google Scholar 

  • Shafique, S., et al. (2014b). Determination of molecular and biochemical changes in cotton plants mediated by mealybug. NJAS – Wageningen Journal of Life Sciences, 70–71, 39–45.

    Google Scholar 

  • Shah, A. A., et al. (2020). Butanolide alleviated cadmium stress by improving plant growth, photosynthetic parameters and antioxidant defense system of brassica oleracea. Chemosphere, 261, 127728.

    CAS  PubMed  Google Scholar 

  • Shah, A. A., et al. (2021). Ameliorative role of FBL-10 and silicon against lead induced stress in Solanum melongena. Plant Physiology and Biochemistry, 158, 486–496.

    CAS  PubMed  Google Scholar 

  • Shahid, M., & Khan, M. S. (2018). Glyphosate induced toxicity to chickpea plants and stress alleviation by herbicide tolerant phosphate solubilizing Burkholderia cepacia PSBB1 carrying multifarious plant growth promoting activities. 3 Biotech, 8, 131.

    PubMed  PubMed Central  Google Scholar 

  • Sharma, S. D., Singh, M., Rawls, E. K., & Taylor, J. B. (2007). Defoliation of citrus trees by diquat. Proceedings of the Florida State Horticultural Society, 120, 120–126.

    Google Scholar 

  • Sharma, A., et al. (2018). Brassinosteroid-mediated pesticide detoxification in plants: A mini-review. Cogent Food & Agriculture, 4, 1436212.

    Google Scholar 

  • Sharma, A., Kumar, V., Thukral, A. K., & Bhardwaj, R. (2019). Responses of plants to pesticide toxicity: An overview. Planta Daninha, 37.

    Google Scholar 

  • Sharma, A., et al. (2020). Photosynthetic response of plants under different abiotic stresses: A review. Journal of Plant Growth Regulation, 39, 509–531.

    CAS  Google Scholar 

  • Singh, B. K., & Walker, A. (2006). Microbial degradation of organophosphorus compounds. FEMS Microbiology Reviews, 30, 428–471.

    CAS  PubMed  Google Scholar 

  • Singh, S., et al. (2020). Herbicide glyphosate: Toxicity and microbial degradation. International Journal of Environmental Research and Public Health, 17, 1–18.

    Google Scholar 

  • Solomon, K., & Thompson, D. (2003). Ecological risk assessment for aquatic organisms from over-water uses of glyphosate. Journal of Toxicology and Environmental Health. Part B, 6, 289–324.

    CAS  Google Scholar 

  • Tani, E., et al. (2020). How is glyphosate resistance modified by exogenous salicylic acid application on Conyza bonariensis biotypes. Phytoparasitica, 48, 305–315.

    CAS  Google Scholar 

  • Tariq, M., Shah, A. A., Yasin, N. A., Ahmad, A., & Rizwan, M. (2020). Enhanced performance of bacillus megaterium OSR-3 in combination with putrescine ammeliorated hydrocarbon stress in Nicotiana tabacum. International Journal of Phytoremediation, 1–11. https://doi.org/10.1080/15226514.2020.1801572

  • Ullah, H., Chen, J. G., Wang, S., & Jones, A. M. (2002). Role of a heterotrimeric G protein in regulation of Arabidopsis seed germination. Plant Physiology, 129, 897–907.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Unterholzner, S. J., et al. (2015). Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis. Plant Cell, 27, 2261–2272.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Hove, J. L. K., et al. (2010). Succinyl-coa ligase deficiency: A mitochondrial hepatoencephalomyopathy. Pediatric Research, 68, 159–164.

    PubMed  PubMed Central  Google Scholar 

  • Vemanna, R. S., et al. (2017). Aldo-keto reductase enzymes detoxify glyphosate and improve herbicide resistance in plants. Plant Biotechnology Journal, 15, 794–804.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, M., et al. (2019). Montmorillonites can tightly bind glyphosate and Paraquat reducing toxin exposures and toxicity. ACS Omega, 4, 17702–17713.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada, T., Kremer, R. J., de Camargo e Castro, P. R., & Wood, B. W. (2009). Glyphosate interactions with physiology, nutrition, and diseases of plants: Threat to agricultural sustainability? European Journal of Agronomy, 31, 111–113.

    CAS  Google Scholar 

  • Yasin, N. A., et al. (2018a). Halotolerant plant-growth promoting rhizobacteria modulate gene expression and osmolyte production to improve salinity tolerance and growth in Capsicum annum L. Environmental Science and Pollution Research, 25, 23236–23250.

    CAS  PubMed  Google Scholar 

  • Yasin, N. A., et al. (2018b). Imperative roles of halotolerant plant growth-promoting rhizobacteria and kinetin in improving salt tolerance and growth of black gram (Phaseolus mungo). Environmental Science and Pollution Research, 25, 4491–4505.

    CAS  PubMed  Google Scholar 

  • Yasin, N. A., et al. (2018c). Role of acinetobacter sp. CS9 in improving growth and phytoremediation potential of Catharanthus longifolius under cadmium stress. Polish Journal of Environmental Studies, 28, 435–443.

    Google Scholar 

  • Yasin, N. A., et al. (2018d). Effect of Bacillus fortis 162 on growth, oxidative stress tolerance and phytoremediation potential of Catharanthus roseus under chromium stress. International Journal of Agriculture and Biology, 20, 1513–1522.

    CAS  Google Scholar 

  • Yasin, N. A. N. A. N. A., et al. (2018e). The beneficial role of potassium in cd-induced stress alleviation and growth improvement in Gladiolus grandiflora L. International Journal of Phytoremediation, 20, 274–283.

    CAS  PubMed  Google Scholar 

  • Yasin, N. A., et al. (2019). Effect of enterobacter sp. CS2 and EDTA on the phytoremediation of ni-contaminated soil by Impatiens balsamina. Polish Journal of Environmental Studies, 28, 425–433.

    CAS  Google Scholar 

  • Yousaf, A., Qadir, A., Anjum, T., & Ahmad, A. (2015). Identification of microbial metabolites elevating vitamin contents in barley seeds. Journal of Agricultural and Food Chemistry, 63, 7304–7310.

    CAS  PubMed  Google Scholar 

  • Yunus, M., Adeela, N., Lutfi, W., Johari, W., & Aqlima, S. (2018). Environmental fate and degradation of glyphosate in soil. Pertanika Journal of Scholarly Research Reviews, 4, 102–116.

    Google Scholar 

  • Yusuf, M., Khan, T. A., & Fariduddin, Q. (2016). Interaction of epibrassinolide and selenium ameliorates the excess copper in Brassica juncea through altered proline metabolism and antioxidants. Ecotoxicology and Environmental Safety, 129, 25–34.

    CAS  PubMed  Google Scholar 

  • Yusuf, M., Fariduddin, Q., Khan, T. A. A., & Hayat, S. (2017). Epibrassinolide reverses the stress generated by combination of excess aluminum and salt in two wheat cultivars through altered proline metabolism and antioxidants. South African Journal of Botany, 112, 391–398.

    CAS  Google Scholar 

  • Zabalza, A., Orcaray, L., Gaston, S., & Royuela, M. (2004). Carbohydrate accumulation in leaves of plants treated with the herbicide chlorsulfuron or imazethapyr is due to a decrease in sink strength. Journal of Agricultural and Food Chemistry, 52, 7601–7606.

    CAS  PubMed  Google Scholar 

  • Zaheer, M. M., et al. (2018). Amelioration of cadmium stress in gladiolus (Gladiolus grandiflora L.) by application of potassium and silicon. Journal of Plant Nutrition, 41, 461–476.

    CAS  Google Scholar 

  • Zahran, H., & Rhizobium-Legume, H. (1999). Symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Reviews, 63, 968–989.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zobiole, L. H. S., et al. (2010). Effect of glyphosate on symbiotic N2 fixation and nickel concentration in glyphosate-resistant soybeans. Applied Soil Ecology, 44, 176–180.

    Google Scholar 

  • Zobiole, L. H. S., Kremer, R. J., de Oliveira, R. S., Jr., & Constantin, J. (2012). Glyphosate effects on photosynthesis, nutrient accumulation, and nodulation in glyphosate-resistant soybean. Journal of Plant Nutrition and Soil Science, 175, 319–330.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saeed, T., Ahmad, A., Khan, M.T.A., Shahzadi, I. (2022). Glyphosate: Is Brassinosteroids Application a Remedy?. In: Khan, M.T.A., Yusuf, M., Qazi, F., Ahmad, A. (eds) Brassinosteroids Signalling. Springer, Singapore. https://doi.org/10.1007/978-981-16-5743-6_13

Download citation

Publish with us

Policies and ethics