Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 208 Accesses

Abstract

We investigate transport properties of single crystals and microstructures of prototype Kondo insulator YbB\(_{12}\) to investigate the topological surface state (SS). We prepared the microstructures by employing focused ion beam method and controlled sample thickness down to several micrometers. In all samples, the temperature dependence of the electrical resistivity is insulating at high temperatures, and the resistivity exhibits a plateau at low temperatures. The magnitude of the plateau value decreases with reducing sample thickness, which is quantitatively consistent with the surface electronic conduction in the bulk insulating YbB\(_{12}\). Moreover, the magnetoresistance of the microstructures exhibits a weak-antilocalization effect at low field. These results are consistent with the presence of topologically protected SS, suggesting that YbB\(_{12}\) is a candidate material of the topological Kondo insulator (TKI). The high field resistivity measurements up to \(\mu _0H=\) 50 T of the microstructures provide supporting evidence that the quantum oscillations (QOs) in the resistivity of YbB\(_{12}\) occur in the insulating bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsunetsugu H, Sigrist M, Ueda M (1997) Rev Mod Phys 69:809–863

    Article  ADS  Google Scholar 

  2. Riseborough PS (2000) Adv Phys 49:257–320

    Article  ADS  Google Scholar 

  3. Li L, Sun K, Kurdak C, Allen JW (2020) Nat Rev Phys 2:463–479

    Article  Google Scholar 

  4. Dzero M, Xia J, Galitski V, Coleman P (2016) Annu Rev Condens Matter Phys 7:249

    Article  ADS  Google Scholar 

  5. Dzero M, Sun K, Galitski V, Coleman P (2010) Phys Rev Lett 104:106408

    Article  ADS  Google Scholar 

  6. Kim DJ, Xia J, Fisk Z (2014) Nat Mater 13:466

    Article  ADS  Google Scholar 

  7. Syers P, Kim D, Fuhrer MS, Paglione J (2015) Phys Rev Lett 114:096601

    Article  ADS  Google Scholar 

  8. Eo YS, Wolgast S, Rakoski A, Mihaliov D, Kang BY, Song MS, Cho BK, Hatnean MC, Balakrishnan G, Fisk Z, Saha SR, Wang X, Paglione J, Kurdak C (2020) Phys Rev B 101:155109

    Article  ADS  Google Scholar 

  9. Xu N, Biswas PK, Dil JH, Dhaka RS, Landolt G, Muff S, Matt CE, Shi X, Plumb NC, Radović M, Pomjakushina E, Conder K, Amato A, Borisenko SV, Yu R, Weng HM, Fang Z, Dai X, Mesot J, Ding H, Shi M (2014) Nat Commun 5:4566

    Article  ADS  Google Scholar 

  10. Weng H, Zhao J, Wang Z, Fang Z, Dai X (2014) Phys Rev Lett 112:016403

    Article  ADS  Google Scholar 

  11. Hagiwara K, Ohtsubo Y, Matsunami M, Ideta SI, Tanaka K, Miyazaki H, Rault JE, Le Févre P, Bertran F, Taleb-Ibrahimi A, Yukawa R, Kobayashi M, Horiba K, Kumigashira H, Sumida K, Okuda T, Iga F, Kimura SI (2016) Nat Commun 7:12690

    Article  ADS  Google Scholar 

  12. Li G, Xiang Z, Yu F, Asaba T, Lawson B, Cai P, Tinsman C, Berkley A, Wolgast S, Eo YS, Kim DJ, Kurdak C, Allen JW, Sun K, Chen XH, Wang YY, Fisk Z, Li L (2014) Science 346:1208

    Article  ADS  Google Scholar 

  13. Tan BS, Hsu YT, Zeng B, Ciomaga Hatnean M, Harrison N, Zhu Z, Hartstein M, Kiourlappou M, Srivastava A, Johannes MD, Murphy TP, Park JH, Balicas L, Lonzarich GG, Balakrishnan G, Sebastian SE (2015) Science 349:287

    Article  ADS  Google Scholar 

  14. Xiang Z, Kasahara Y, Asaba T, Lawson B, Insman C, Chen L, Sugimoto K, Kawaguchi S, Sato Y, Li G, Yao S, Chen YL, Iga F, Singleton J, Matsuda Y, Li L (2018) Science 69:65

    Article  ADS  Google Scholar 

  15. Sato Y, Xiang Z, Kasahara Y, Taniguchi T, Kasahara S, Chen L, Asaba T, Tinsman C, Murayama H, Tanaka O, Mizukami Y, Shibauchi T, Iga F, Singleton J, Li L, Matsuda Y (2019) Nat Phys 15:954

    Article  Google Scholar 

  16. Xiang Z, Chen L, Chen K-W, Tinsman C, Sato Y, Asaba T, Lu H, Kasahara Y, Jaime M, Balakirev F, Iga F, Matsuda Y, Singleton J, Li L (2021) Nat Phys 17:788

    Google Scholar 

  17. Sato Y, Xiang Z, Kasahara Y, Kasahara S, Chen L, Tinsman C, Iga F, Singleton J, Nair NL, Maksimovic N, Analytis JG, Li L, Matsuda Y (2021) J Phys D Appl Phys 54:404002

    Google Scholar 

  18. Iga F, Shimizu N, Takabatake T (1998) J Magn Magn Mater 177–181:337

    Article  ADS  Google Scholar 

  19. Wolgast S, Kurdak Ç, Sun K, Allen JW, Kim DJ, Fisk Z (2013) Phys Rev B 88:180405(R)

    Article  ADS  Google Scholar 

  20. Gabáni S, Pristáš G, Takáčová I, Sluchanko N, Siemensmeyer K, Shitsevalova N, Filipov V, Flachbart K (2015) Solid State Sci 47:17–20

    Article  ADS  Google Scholar 

  21. Harrison N (2018) Phys Rev Lett 121:026602

    Article  ADS  Google Scholar 

  22. Shen H, Fu L (2018) Phys Rev Lett 121:026403

    Article  ADS  Google Scholar 

  23. Wakeham N, Wang YQ, Fisk Z, Ronning F, Thompson JD (2015) Phys Rev B 91:085107

    Article  ADS  Google Scholar 

  24. De S, Coleman JN (2010) SACS Nano 4(5):2713–2720

    Google Scholar 

  25. Ando T, Nakanishi T, Saito R (1998) J Phys Soc Jpn 67:2857

    Article  ADS  Google Scholar 

  26. Hasan MZ, Kane CL (2010) Rev Mod Phys 82:3046

    Article  ADS  Google Scholar 

  27. Qi XL, Zhang SC (2011) Rev Mod Phys 83:1057

    Article  ADS  Google Scholar 

  28. Thomas S, Kim DJ, Chung SB, Grant T, Fisk Z, Xia J (2016) Phys Rev B 94:205114

    Article  ADS  Google Scholar 

  29. Assaf BA, Cardinal T, Wei P, Katmis F, Moodera JS, Heiman D (2013) Appl Phys Lett 102:012102

    Article  ADS  Google Scholar 

  30. Sugiyama K, Iga F, Kasaya M, Kasuya T, Date M (1988) J Phys Soc Jpn 57:3946

    Article  ADS  Google Scholar 

  31. Shahrokhvand M, Pezzini S, Van Delft MR, Zeitler U, Hussey NE, Wiedmann S (2017) Phys Rev B 96:205125

    Article  Google Scholar 

  32. Hikami S, Larkin AI, Nagaoka Y (1980) Prog Theor Phys 63:707

    Article  ADS  Google Scholar 

  33. Pavlosiuk O, Kaczorowski D, Fabreges X, Gukasov A, Wisniewski P (2016) Sci Rep 6:18797

    Article  ADS  Google Scholar 

  34. Sasmal S, Mondal R, Kulkarni R, Thamizhavel A, Singh B (2020) J Phys Condens Matter 32:335701

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sato, Y. (2021). Topological Surface Conduction in YbB\(_{12}\). In: Quantum Oscillations and Charge-Neutral Fermions in Topological Kondo Insulator YbB₁₂. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-16-5677-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5677-4_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5676-7

  • Online ISBN: 978-981-16-5677-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics