Skip to main content

Inventory Control with Machine Learning Approach: A Bibliometric Analysis

  • Conference paper
  • First Online:
Pervasive Computing and Social Networking

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 317))

  • 797 Accesses

Abstract

The selection from this survey report is to use several keywords as a search on Scopus database. Some of the keywords used in this analysis utilize the novelty of research on inventory control and machine learning approach. The bibliometric analysis takes some aspects of the analysis, namely: the number of annual publications in the journal (book chapter, conference are excluded), the most journal in publication, collaboration between authors, and network analysis between keywords. Based on citation, machine learning approach is generally used to predict, classify inventory, sales, and production scheduling. Many approaches from machine learning to inventory control are explored, especially in the field of computer science to answer the challenges in the era of industry 4.0 and Internet of Things (IoT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Utami NW (2020) Mengenal sistem inventory and cara Mudah Pengelolaannya. J Enterpreneur. https://www.jurnal.id/id/blog/2018-mengenal-sistem-inventory-dan-cara-mudah-pengelolaannya/. Accessed 18 Nov 2020

  2. Priharto S (2020) Pengertian Sistem Inventory, Manfaat, serta Tips Pengelolaannya Jan. 22, 2020. https://accurate.id/marketing-manajemen/pengertian-sistem-inventory-manfaat-serta-tips-pengelolaannya/. Accessed 18 Nov 2020

  3. “Stock control and inventory.” https://www.infoentrepreneurs.org/en/guides/stock-control-and-inventory/. Accessed 25 Nov 2020

  4. Praveen KB (2020) Inventory management using machine learning. Int J Eng Res V9(06):866–869. https://doi.org/10.17577/ijertv9is060661

    Article  Google Scholar 

  5. Hajek P, Abedin MZ (2020) A profit function-maximizing inventory backorder prediction system using big data analytics. IEEE Access 8:58982–58994. https://doi.org/10.1109/ACCESS.2020.2983118

    Article  Google Scholar 

  6. Islam S, Amin SH (2020) Prediction of probable backorder scenarios in the supply chain using distributed random forest and gradient boosting machine learning techniques. J Big Data 7(1). https://doi.org/10.1186/s40537-020-00345-2

  7. Li J, Wang T, Chen Z, Luo G (2019) Machine learning algorithm generated sales prediction for inventory optimization in cross-border E-Commerce 1(1):62–74. https://doi.org/10.25236/IJFET.2019.010107

  8. Fahimnia B, Sarkis J, Davarzani H (2015) Green supply chain management: a review and bibliometric analysis, vol 162. Elsevier

    Google Scholar 

  9. Aytug H, Lawley MA, McKay K, Mohan S, Uzsoy R (2005) Executing production schedules in the face of uncertainties: a review and some future directions. Eur J Oper Res 161(1):86–110. https://doi.org/10.1016/j.ejor.2003.08.027

    Article  MathSciNet  MATH  Google Scholar 

  10. Gabrel V, Murat C, Thiele A (2014) Recent advances in robust optimization: an overview. Eur J Oper Res 235(3):471–483. https://doi.org/10.1016/j.ejor.2013.09.036

    Article  MathSciNet  MATH  Google Scholar 

  11. Lisboa PJ, Taktak AFG (2006) The use of artificial neural networks in decision support in cancer: a systematic review. Neural Netw 19(4):408–415. https://doi.org/10.1016/j.neunet.2005.10.007

    Article  MATH  Google Scholar 

  12. Negahban A, Smith JS (2014) Simulation for manufacturing system design and operation: literature review and analysis. J Manuf Syst 33(2):241–261. https://doi.org/10.1016/j.jmsy.2013.12.007

    Article  Google Scholar 

  13. Esmaeilian B, Behdad S, Wang B (2016) The evolution and future of manufacturing: a review. J Manuf Syst 39:79–100. https://doi.org/10.1016/j.jmsy.2016.03.001

    Article  Google Scholar 

  14. Frank AG, Dalenogare LS, Ayala NF (2019) Industry 4.0 technologies: implementation patterns in manufacturing companies. Int J Prod Econ 210:15–26. https://doi.org/10.1016/j.ijpe.2019.01.004

    Article  Google Scholar 

  15. Partovi FY, Anandarajan M (2002) Classifying inventory using an artificial neural network approach. Comput Ind Eng 41(4):389–404. https://doi.org/10.1016/S0360-8352(01)00064-X

    Article  Google Scholar 

  16. den Boer AV (2015) Dynamic pricing and learning: Historical origins, current research, and new directions. Surv Oper Res Manag Sci 20(1):1–18. https://doi.org/10.1016/j.sorms.2015.03.001

    Article  MathSciNet  Google Scholar 

  17. Wang Y-C, Usher JM (2005) Application of reinforcement learning for agent-based production scheduling. Eng Appl Artif Intell 18(1):73–82. https://doi.org/10.1016/j.engappai.2004.08.018

    Article  Google Scholar 

  18. Thomassey S (2010) Sales forecasts in clothing industry: the key success factor of the supply chain management. Int J Prod Econ 128(2):470–483. https://doi.org/10.1016/j.ijpe.2010.07.018

    Article  Google Scholar 

  19. Nguyen T, ZHOU L, Spiegler V, Ieromonachou P, Lin Y (2018) Big data analytics in supply chain management: a state-of-the-art literature review. Comput Oper Res 98:254–264. https://doi.org/10.1016/j.cor.2017.07.004

  20. Syntetos AA, Babai Z, Boylan JE, Kolassa S, Nikolopoulos K (2016) Supply chain forecasting: theory, practice, their gap and the future. Eur J Oper Res 252(1):1–26. https://doi.org/10.1016/j.ejor.2015.11.010

    Article  MathSciNet  MATH  Google Scholar 

  21. Bazan E, Jaber MY, Zanoni S (2016) A review of mathematical inventory models for reverse logistics and the future of its modeling: an environmental perspective. Appl Math Model 40(5):4151–4178. https://doi.org/10.1016/j.apm.2015.11.027

    Article  MathSciNet  MATH  Google Scholar 

  22. Rodger JA (2014) Application of a fuzzy feasibility bayesian probabilistic estimation of supply chain backorder aging, unfilled backorders, and customer wait time using stochastic simulation with Markov blankets. Expert Syst Appl 41(16):7005–7022. https://doi.org/10.1016/j.eswa.2014.05.012

    Article  Google Scholar 

  23. Liao G-L, Sheu S-H (2011) Economic production quantity model for randomly failing production process with minimal repair and imperfect maintenance. Int J Prod Econ 130(1):118–124. https://doi.org/10.1016/j.ijpe.2010.12.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudimanto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sudimanto, Lumban Gaol, F., Warnars, H.L.H.S., Soewito, B. (2022). Inventory Control with Machine Learning Approach: A Bibliometric Analysis. In: Ranganathan, G., Bestak, R., Palanisamy, R., Rocha, Á. (eds) Pervasive Computing and Social Networking. Lecture Notes in Networks and Systems, vol 317. Springer, Singapore. https://doi.org/10.1007/978-981-16-5640-8_21

Download citation

Publish with us

Policies and ethics