Skip to main content

Disturbance of Osteonal Remodeling in Atypical Femoral Fracture: A Short Review of Pathogenesis and a Case Report: Histomorphometric Analysis of Fracture Site

  • Chapter
  • First Online:
Osteoporotic Fracture and Systemic Skeletal Disorders

Abstract

A short review of the pathogenesis of an atypical femoral fracture (AFF) and a case report were made on radiological and histological findings.

An 83-year-old Japanese woman complained of left lateral thigh pain following a low-energy fall 4 months prior to admission. She had been treated for osteoporosis with Risedronate for the previous 5 years. She was diagnosed with an AFF. Radiographs revealed cortical thickening and a transverse radiolucent fracture line in the lateral cortex of the shaft. The patient had normal levels of bone biomarkers except for low 25(OH) Vitamin D. Due to significant bowing, a corrective osteotomy, intramedullary nailing and plate fixation were performed after double fluorochrome labeling. The resected bone wedge was histomorphometrically analyzed. Three ground sections of the lateral cortex, stained with Villanueva bone stain at the fracture site showed many and large pores, occupying 16–59% of the lateral cortex. Increased pore sizes with widespread variation suggested prolonged osteoclastic activity in the reversal/resorptive phase, and incomplete coupling from resorption to formation in osteonal remodeling. Endocortical lamellar bone formation had started about 2.7 years prior to osteotomy, probably as an adaptation for weakness due to many intracortical pores. With the gradual accumulation of large pores and their coalescence, in combination with high tensile stresses on the lateral femoral cortex, an AFF eventually occurred.

The present invited review was completed and submitted to the publisher on 13-Sep-20. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Odvina CV, Zerwekh JE, Rao DS, et al. Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab. 2005;90:1294–301.

    Article  CAS  Google Scholar 

  2. Starr J, Tay YKD, Shane E. Current understanding of epidemiology, pathophysiology, and management of atypical femur fractures. Rev Curr Osteoporos Rep. 2018;16:519–29.

    Article  Google Scholar 

  3. Neviaser AS, Lane JM, Lenart BA, et al. Low-energy femoral shaft fractures associated with alendronate use. J Orthop Trauma. 2008;22:346–50.

    Article  Google Scholar 

  4. Yang SP, Kim TW, Boland PJ, et al. Retrospective review of atypical femoral fracture in metastatic bone disease patients receiving Denosumab therapy. Oncologist. 2017;22(4):438–44.

    Article  CAS  Google Scholar 

  5. Shane E, Burr D, Ebeling PR, et al. Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2010;25:2267–94.

    Article  Google Scholar 

  6. Shane E, Burr D, Abrahamsen B, et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2014;29:1–24.

    Article  Google Scholar 

  7. Larsen MS, Schmal H. The enigma of atypical femoral fracture: a summary of current knowledge. EFORT OPEN Rev. 2018;3(9):494–500.

    Google Scholar 

  8. Kwek EB, Goh SK, Koh JS, et al. An emerging pattern of subtrochanteric stress fractures: a long-term complication of alendronate therapy? Injury. 2008;39:224–31.

    Article  Google Scholar 

  9. Lenart BA, Neviaser AS, Lyman S, et al. Association of low energy femoral fractures with prolonged bisphosphonate use: a case control study. Osteoporos Int. 2009;20:1353–62.

    Article  CAS  Google Scholar 

  10. Mohan PC, Howe TS, Koh JS, et al. Radiographic features of multifocal endosteal thickening of the femur in patients on long term bisphosphonate therapy. Eur Radiol. 2013;23:222–7.

    Article  Google Scholar 

  11. Sato H, Kondo N, Wada, et al. The cumulative incidence of and risk factor for latent beaking in patients with autoimmune diseases taking long-term glucocorticoids and bisphosphonates. Osteoporos Int. 2016;27(3):1217–25. https://doi.org/10.1007/s00198-015-382-9.

    Article  CAS  PubMed  Google Scholar 

  12. Hagino H, Endo N, Yamamoto T, et al. Treatment status and radiographic features of patients with atypical femoral fracture. J Orthop Sci. 2018;23(2):316–20.

    Article  Google Scholar 

  13. Kumar G, Dhamangaonkar AC. Bisphosphonate associate femoral stress fracture distal to an orthopaedic implant: they are predictable ! Case reports. J Cli Orthop Trauma. 2019(Suppl. 1):S112–4.

    Google Scholar 

  14. Tan J, Sano H, Poole K. Antiresorptive-associated spontaneous fractures of both tibiae, followed by an atypical femur fracture during the sequential treatment with alendronate, denosumab then teriparatide. BMJ Case Rep. 2019;12(7):e229366. https://doi.org/10.1136/bcr-2019-229366

  15. Somford MP, Draijer FW, Thomassen BJ, et al. Bilateral fractures of the femur diaphysis in a patient with rheumatoid arthritis on long-term treatment with alendronate: clues to the mechanism of increased bone fragility. J Bone Miner Res. 2009;24(10):1736–40.

    Article  Google Scholar 

  16. Aspenberg P, Schilcher J, Fahlgren A. Histology of an undisplaced femoral fatigue fracture in association with bisphosphonate treatment. Acta Orthop. 2010;81(4):460–2.

    Article  Google Scholar 

  17. Jamal SA, Dion N, Ste-Marie LG. Atypical femoral fractures and bone turnover. N Engl J Med. 2011;365:1261–2.

    Article  CAS  Google Scholar 

  18. Kajino Y, Kabata T, Watanabe K, et al. Histological finding of atypical subtrochanteric fracture after long-term alendronate therapy. J Orthop Sci. 2011;17(3):313–8.

    Article  Google Scholar 

  19. Schilcher J, Sandberg O, Isaksson H, et al. Histology of 8 atypical femoral fractures remodeling but no healing. Acta Orthop. 2014;85(3):280–6.

    Article  Google Scholar 

  20. Schilcher J: Personal communication.

    Google Scholar 

  21. Kondo N, Fukuhara T, Watanabe Y, et al. Bone formation parameters of the biopsied ilium differ between subtrochanteric and diaphyseal atypical femoral fractures in bisphosphonate-treated patients. Tohoku J Exp Med. 2017;243(4):247–54.

    Article  CAS  Google Scholar 

  22. Oh Y, Wakabayashi Y, Kurosa Y, et al. Potential pathogenic mechanism for stress fractures of the bowed femoral shaft in the elderly: mechanical analysis by the CT based finite element method. Injury. 2014;45:1764–71.

    Article  Google Scholar 

  23. Oh Y, Fujita K, Wakabayashi Y, et al. Location of atypical femoral fracture can be determined by tensile stress distribution influenced by femoral bowing and neck shaft angle: a CT-based nonlinear finite element analysis model for the assessment of femoral shaft loading stress. Injury. 2017;48:2736–43.

    Article  Google Scholar 

  24. Oh Y, Yamamoto K, Hashimoto J, et al. Biological activity is not suppressed in mid-shaft stress fracture of the bowed femoral shaft unlike in “typical” atypical subtrochanteric femoral fracture: a proposed theory of atypical femoral fracture subtypes. Bone. 2020;137:115453. https://doi.org/10.1016/j.bone.2020.115453.

    Article  CAS  PubMed  Google Scholar 

  25. Villanueva AR, Lundin KD. A versatile new mineralized bone stain for simultaneous assessment of tetracycline and osteoid seams. Stain Technol. 1989;64:129–38.

    Article  CAS  Google Scholar 

  26. Villanueva AR. Preparation and staining of mineralized sections of bone. In: Takahashi HE, editor. Handbook of bone morphometry. 2nd ed. Niigata: Nishimura Publisher; 1997. p. 27–40.

    Google Scholar 

  27. Hirano F, Okuma KF, Zenke Y, et al. Disturbance of osteonal bone remodeling and high tensile stresses on the lateral cortex in atypical femoral fracture after long-term treatment with risedronate and alfacalcidol for osteoporosis. Bone Rep. 2021;101091 https://doi.org/10.1016/j.bonr.2021.101091.

  28. Dempster DW, Compston JE, Drezner MK, et al. Standardized nomenclature, symbols, and units for bone Histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry nomenclature committee. J Bone Miner Res. 2013;28(1):1–16. https://doi.org/10.1002/jbmr.1805.

    Article  Google Scholar 

  29. Lou S, Lv H, Li Z, et al. The effects of low-intensity pulsed ultrasound on fresh fracture: a meta-analysis. Medicine (Baltimore). 2017;96(39):e8181.

    Article  Google Scholar 

  30. Greenspan SL, Vujevich K, Britton C, et al. Teriparatide for treatment of patients with bisphosphonate-associated atypical fracture of the femur. Randomized controlled trial. Osteoporos Int. 2018;29(2):501–6.

    Article  CAS  Google Scholar 

  31. Kendle DL, Marin F, Zerbini CAF, et al. Effects of teriparatide and risedronate on new fractures in post-menopausal women with severe osteoporosis (VERO): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet. 2018391(10117):230–40. https://doi.org/10.1016/S0140-6736(17)32137-2

  32. Tuchie H, Miyakoshi N, Iba K, et al. The effects of teriparatide on acceleration of bone healing following atypical femoral fracture: comparison between daily and weekly administration. Osteoporos Int. 2018;29(12):2659–65.

    Article  Google Scholar 

  33. Frost HM. Presence of microscopic cracks in vivo in bone. Henry Ford Hosp Med Bull. 1960;8(1):25–35.

    Google Scholar 

  34. Mori S, Burr DB. Increased intracortical remodeling following fatigue damage. Bone. 1993;14:103–9.

    Article  CAS  Google Scholar 

  35. Burr DB, Forwood MR, Fyhrie DP, et al. Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res. 1997;12(1):6–15.

    Article  CAS  Google Scholar 

  36. Parfitt AM. Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone. 2002;30(1):5–7.

    Article  CAS  Google Scholar 

  37. Diab T, Vashishth D. Morphology, localization and accumulation of in vivo microdamage in human cortical bone. Bone. 2007;40(3):612–8.

    Google Scholar 

  38. Harrison KD, Cooper DM. Modalities for visualization of cortical bone remodeling: the past, present and future. Front Endocrinol. 2015;6:122. https://doi.org/10.3389/fendo.2015.00122

  39. Norimatsu H. A linear rate of longitudinal resorption, and number and surface area of actively forming secondary osteons in the cortical bone. J Jap Orthop Ass. 1971;45:415.

    CAS  PubMed  Google Scholar 

  40. Jaworski ZF, Lok E. The rate of osteoclastic bone erosion in Haversian remodeling sites of adult dog’s rib. Calcif Tiss Res. 1972;10:103–12.

    Google Scholar 

  41. Takahashi H, Norimatsu H. The longitudinal and transverse rate of resorption of the Haversian systems in canine bone. In: Proceedings of the first workshop on bone morphometry. Jaworski ZFG (ed). Univ Ottawa Press, 1976; 143–147.

    Google Scholar 

  42. Mashiba T, Hirano T, Turner CH, et al. Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res. 2000;15(4):613–20. https://doi.org/10.1359/jbmr.2000.15.4.613.

    Article  CAS  PubMed  Google Scholar 

  43. Delaisse JM. The reversal phase of the bone remodeling cycle: cellular prerequisites for coupling resorption and formation. Bonekey Rep. 2014 (review).

    Google Scholar 

  44. Andersen TL, Abdelgawad ME, Kristensen HB, et al. Understanding coupling between bone resorption and formation: are reversal cells the missing link? Am J Pathol. 2013;183(1):235–46. https://doi.org/10.1016/j.ajpath.2013.03.006.

    Article  CAS  PubMed  Google Scholar 

  45. Abdelgawad HE, Delaisse JM, Hinge M, et al. Early reversal cells in adult human bone remodeling: osteoblastic nature, catabolic functions and interactions with osteoclasts. Histochem Cell Biol. 2016;145(6):603–15. https://doi.org/10.1007/s00418-016-1414-y

  46. Lassen NE, Andersen TL, Ploen GG, et al. Coupling of bone resorption and formation in real time: new knowledge gained from human Haversian BMUs. J Bone Miner Res. 2017:1–11. https://doi.org/10.1002/jbmr.3091.

  47. Jensen PR, Andersen TL, Chavassieux P, et al. Bisphosphonates impair the onset of bone formation at remodeling sites. Bone. 2021;145:115850. https://doi.org/10.1016/j.bone.2021.115850.

    Article  CAS  PubMed  Google Scholar 

  48. Landeros O, Frost HM. The cross section size of the osteon. Henry Ford Hosp Med Bull. 1964;12:517–25.

    Google Scholar 

  49. Yamamoto K, Okuno M, Nakamura T, et al. Deterioration of microstructure in compact bone associated with femoral neck fracture–morphometric analysis of contact microradiographs (CMRs). J Jpn Osteoporos Soc. 2018;4:323–32 (Japanese).

    Google Scholar 

  50. Dobnig H, Stepan JJ, Burr DB, et al. Teriparatide reduces bone microdamage accumulation in postmenopausal women previously treated with alendronate. J Bone Miner Res. 2009;24(12):1998–2006.

    Google Scholar 

  51. Balani DH, Ono N, Kronenberg HM. Parathyroid hormone regulates fates of murine preosteoblast precursors in vivo. J Clin Invest. 2017;127(9):3327–38. https://doi.org/10.1172/JCI91699.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Skedros JG, Holmes JL, Vajda EG, et al. Cement lines of secondary osteons in human bone are not mineral-deficient: new data in a historical perspective. Anat Rec A Discov Mol Cell Evol Biol. 2005;286(1):781–803. https://doi.org/10.1002/ar.a.20214

  53. Okada H, Tamamura R, Kanno T, et al. Ultrastructure of cement lines. J Hard Tissue Biol. 2013;22(4):445–50. https://doi.org/10.2485/jhtb.22.445

  54. Tsuchie H, Miyakoshi N, Kasukawa Y, et al. Factors related to curved femur in elderly Japanese women. Ups J Med Sci. 2016;121(3):170–3. https://doi.org/10.1080/03009734.2016.1185200.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki E. Takahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takahashi, H.E. et al. (2022). Disturbance of Osteonal Remodeling in Atypical Femoral Fracture: A Short Review of Pathogenesis and a Case Report: Histomorphometric Analysis of Fracture Site. In: Takahashi, H.E., Burr, D.B., Yamamoto, N. (eds) Osteoporotic Fracture and Systemic Skeletal Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-16-5613-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5613-2_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5612-5

  • Online ISBN: 978-981-16-5613-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics