Skip to main content

Intermolecular Vibrations in Aprotic Molecular Liquids and Ionic Liquids

  • Chapter
  • First Online:
Molecular Basics of Liquids and Liquid-Based Materials

Part of the book series: Physical Chemistry in Action ((PCIA))

Abstract

Intermolecular dynamics in liquids and solutions involves the collective orientational motion of solvent/liquid molecules and intermolecular vibrations. These motions significantly influence the elementary reaction processes in solution. Therefore, the intermolecular dynamics of liquids and solutions is among the most important basic themes in chemistry. The intermolecular dynamics in liquids and solutions occurs in the time domain of approximately tens of femtoseconds (fs) to hundreds of picoseconds (about 103 to 10−1 cm−1 in the frequency domain with the wavenumber unit). Thus, for a detailed understanding of intermolecular vibrations and collective orientational motion in liquids and solutions, observing molecular motions in the low-frequency region (approximately 200 cm−1 or less) is necessary. Dynamic Raman-induced Kerr effect spectroscopy (RIKES) using a fs laser can obtain low-frequency spectra without Rayleigh scattering. In this chapter, the subject of intermolecular vibrations in molecular liquids (MLs) and ionic liquids (ILs) studied by fs-RIKES is overviewed. Studies on the low-frequency spectra of liquids by complementary methods, molecular dynamics (MD) simulations, and THz time-domain spectroscopy (THz-TDS) or far-infrared (far-IR) spectroscopy are also outlined in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nitzan A (2006) Chemical dynamics in condensed phases, Relaxation, transfer and reactions in condensed molecular systems. Oxford University Press, Oxford

    Book  Google Scholar 

  2. Kelley AM (2013) Condensed-phase molecular spectroscopy and photophysics. John Wiley & Sons, Inc., Hoboken

    Google Scholar 

  3. McMorrow D, Lotshaw WT, Kenney-Wallace GA (1988) Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids. IEEE J Quantum Electron QE-24(2):443

    Article  CAS  Google Scholar 

  4. Righini R (1993) Ultrafast optical Kerr effect in liquids and solids. Science 262(5138):1386

    Article  CAS  PubMed  Google Scholar 

  5. Gruner G (ed) (1998) Millimeter and submillimeter wave spectroscopy of solids. Berlin, Springer

    Google Scholar 

  6. Mittleman D (ed) (2003) Sensing with terahertz radiation. Berlin, Springer

    Google Scholar 

  7. Lotshaw WT, McMorrow D, Thantu N, Melinger JS, Kitchenham R (1995) Intermolecular vibrational coherence in molecular liquids. J Raman Spectrosc 26(7):571

    Article  CAS  Google Scholar 

  8. Castner EW Jr, Maroncelli M (1998) Solvent dynamics derived from optical Kerr effect, dielectric dispersion, and time-resolved Stokes shift measurements: an empirical comparison. J Mol Liq 77(1–3):1

    Article  CAS  Google Scholar 

  9. Kinoshita S, Kai Y, Ariyoshi T, Shimada Y (1996) Low frequency modes probed by time-domain optical Kerr effect spectroscopy. Inter J Mod Phys B 10(11):1229

    Article  CAS  Google Scholar 

  10. Smith NA, Meech SR (2002) Optically-heterodyne-detected optical Kerr effect (OHD-OKE): applications in condensed phase dynamics. Int Rev Phys Chem 21(1):75

    Article  CAS  Google Scholar 

  11. Zhong Q, Fourkas JT (2008) Optical Kerr effect spectroscopy of simple liquids. J Phys Chem B 112(49):15529

    Article  CAS  PubMed  Google Scholar 

  12. Shirota H, Fujisawa T, Fukazawa H, Nishikawa K (2009) Ultrafast dynamics in aprotic molecular liquids: a femtosecond Raman-induced Kerr effect spectroscopic study. Bull Chem Soc Jpn 82(11):1347

    Article  CAS  Google Scholar 

  13. Hunt NT, Jaye AA, Meech SR (2007) Ultrafast dynamics in complex fluids observed through the ultrafast optically-heterodyne-detected optical-Kerr-effect (OHD-OKE). Phys Chem Chem Phys 9:2167

    Article  CAS  PubMed  Google Scholar 

  14. Castner EW Jr, Wishart JF, Shirota H (2007) Intermolecular dynamics, interactions, and solvation in ionic liquids. Acc Chem Res 40(11):1217

    Article  CAS  PubMed  Google Scholar 

  15. Shirota H, Fukazawa H (2011) Atom substitution effects in ionic liquids: A microscopic view by femtosecond Raman-induced Kerr effect spectroscopy. In: Kokorin A (ed) Ionic liquids: theory, properties, new approaches, Chapter 9. InTech, Rijeka, Croatia, p 201

    Google Scholar 

  16. Shirota H, Kakinum S (2020) Temperature-dependent features in low-frequency spectra of ionic liquids. In: Joseph A, Mathew S (eds) Theoretical and computational approaches to predicting ionic liquid properties, Chapter 5. Elsevier, Amsterdam, p 159

    Google Scholar 

  17. Loughnane BJ, Farrer RA, Scodinu A, Reilly T, Fourkas JT (2000) Ultrafast spectroscopic studies of the dynamics of liquids confined in nanoporous glasses. J Phys Chem B 104(23):5421

    Article  CAS  Google Scholar 

  18. Farrer RA, Fourkas JT (2003) Orientational dynamics of liquids confined in nanoporous sol-gel glasses studied by optical Kerr effect spectroscopy. Acc Chem Res 36(8):605

    Article  CAS  PubMed  Google Scholar 

  19. Shirota H, Castner EW Jr (2001) Ultrafast dynamics in aqueous polyacrylamide solutions. J Am Chem Soc 123(51):12877

    Article  CAS  PubMed  Google Scholar 

  20. Shirota H, Moriyama K (2020) Low-frequency vibrational motions of polystyrene in carbon tetrachloride: comparison with model monomer and dependence on concentration and molecular weight. J Phys Chem B 123(10):2006

    Article  Google Scholar 

  21. Jaye AA, Hunt NT, Meech SR (2005) Ultrafast dynamics in the dispersed phase of oil-in-water microemulsions: monosubstituted benzenes incorporated into dodecyltrimethylammonium bromide (DTAB) aqueous micelles. Langmuir 21(4):1238

    Article  CAS  PubMed  Google Scholar 

  22. Eaves JD, Fecko CJ, Stevens AL, Peng P, Tokmakoff A (2003) Polarization-selective femtosecond Raman spectroscopy of low-frequency motions in hydrated protein films. Chem Phys Lett 376(1–2):20

    Article  CAS  Google Scholar 

  23. Giraud G, Wynne K (2002) Time-resolved optical Kerr-effect spectroscopy of low-frequency dynamics in di-L-alanine, poly-L-alanine, and lysozyme in solution. J Am Chem Soc 124(41):12110

    Article  CAS  PubMed  Google Scholar 

  24. Hunt NT, Kattner L, Shanks RP, Wynne K (2007) The dynamics of water-protein interaction studied by ultrafast optical Kerr-effect spectroscopy. J Am Chem Soc 129(11):3168

    Article  CAS  PubMed  Google Scholar 

  25. Gonzalez-Jimenez M, Ramakrishnan G, Harwood T, Lapthorn AJ, Kelly SM, Ellis EM, Wynne K (2016) Observation of coherent delocalized phonon-like modes in DNA under physiological conditions. Nat Commun 7:11799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Levenson MD, Kano SS (1988) Introduction to nonlinear laser spectroscopy. Academic Press, New York

    Google Scholar 

  27. Mukamel S (1995) Principles of nonlinear optical spectroscopy. Oxford University Press, New York

    Google Scholar 

  28. Hattori T, Kobayashi T (1991) Ultrafast optical Kerr dynamics studied with incoherent light. J Chem Phys 94(5):3332

    Article  CAS  Google Scholar 

  29. Cho M, Rosenthal SJ, Scherer NF, Ziegler LD, Fleming GR (1992) Ultrafast solvent dynamics: connection between time resolved fluorescence and optical Kerr measurements. J Chem Phys 96(7):5033

    Article  CAS  Google Scholar 

  30. Wynne K, Galli C, Hochstrasser RM (1992) Femtosecond intermolecular vibrational motion in pyrrole. Chem Phys Lett 193(1–3):17

    Article  CAS  Google Scholar 

  31. Chang YJ, Castner EW Jr (1993) Femtosecond dynamics of hydrogen-bonding solvents. Formamide and N-methylformamide in acetonitrile, DMF, and water. J Chem Phys 99(1):113

    Article  CAS  Google Scholar 

  32. Lotshaw WT, McMorrow D, Kalpouzos C, Kenney-Wallace GA (1987) Femtosecond dynamics of the optical Kerr effect in liquid nitrobenzene and chlorobenzene. Chem Phys Lett 136(3–4):323

    Article  CAS  Google Scholar 

  33. McMorrow D, Lotshaw WT (1991) Intermolecular dynamics in acetonitrile probed with femtosecond Fourier-transform Raman spectroscopy. J Phys Chem 95(25):10395

    Article  CAS  Google Scholar 

  34. Ippen EP, Shank CV (1975) Picosecond response of a high−repetition−rate CS2 optical Kerr gate. Appl Phys Lett 26(3):92

    Article  CAS  Google Scholar 

  35. Eesley GL, Levenson MD, Tolles WM (1978) Optically heterodyned coherent Raman spectroscopy. IEEE J Quantum Electron QE-14(1):45

    Article  Google Scholar 

  36. Levenson MD, Eesley GL (1978) Polarization selective optical heterodyne detection for dramatically improved sensitivity in laser spectroscopy. Appl Phys 19(1):1

    Google Scholar 

  37. Shirota H (2005) Ultrafast molecular dynamics of liquid aromatic molecules and the mixtures with CCl4. J Chem Phys 122(4):044514

    Article  Google Scholar 

  38. Shirota H (2011) Intermolecular vibrations and diffusive orientational dynamics of Cs condensed ring aromatic molecular liquids. J Phys Chem A 115:14262

    Article  CAS  PubMed  Google Scholar 

  39. Bucaro JA, Litovitz TA (1971) Rayleigh scattering: collisional motions in liquids. J Chem Phys 54:3846

    Article  CAS  Google Scholar 

  40. Chang YJ, Castner EW Jr (1993) Fast responses from “slowly relaxing” liquids: a comparative study of the femtosecond dynamics of triacetin, ethylene glycol, and water. J Chem Phys 99(10):7289

    Article  CAS  Google Scholar 

  41. Tanimura Y, Mukamel S (1993) Two-dimensional femtosecond vibrational spectroscopy of liquids. J Chem Phys 99(12):9496

    Article  CAS  Google Scholar 

  42. Nagata Y, Hasegawa T, Tanimura Y (2006) Analyzing atomic liquids and solids by means of two-dimensional Raman spectra in frequency domain. J Chem Phys 124(19):194504

    Article  PubMed  Google Scholar 

  43. McHale JL (2017) Molecular spectroscopy, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  44. Shirota H, Ushiyama H (2008) Hydrogen-bonding dynamics in aqueous solutions of amides and acids: monomer, dimer, trimer, and polymer. J Phys Chem B 112(43):13542

    Article  CAS  PubMed  Google Scholar 

  45. Shirota H (2005) Ultrafast dynamics of liquid poly(ethylene glycol)s and crown ethers studied by femtosecond Raman-induced Kerr effect spectroscopy. J Phys Chem B 109(15):7053

    Article  CAS  PubMed  Google Scholar 

  46. Cho M, Du M, Scherer NF, Fleming GR, Mukamel S (1993) Off-resonant transient birefringence in liquids. J Chem Phys 99(4):2410

    Article  CAS  Google Scholar 

  47. Shirota H, Yoshihara K, Smith NA, Lin SJ, Meech SR (1997) Deuterium isotope effects on ultrafast polarisability anisotropy relaxation in methanol. Chem Phys Lett 281(1–3):27

    Article  CAS  Google Scholar 

  48. Bender JS, Fourkas JT, Coasne B (2016) Empirical analysis of optical Kerr effect spectra: a case for constraint. J Phys Chem B 121(50):11376

    Article  Google Scholar 

  49. Kato T, Shirota H (2011) Intermolecular vibrational modes and orientational dynamics of cooperative hydrogen-bonding dimer of 7-azaindole in solution. J Chem Phys 134(16):164504

    Article  PubMed  Google Scholar 

  50. Shirota H, Fukuda T, Kato T (2013) Solvent dependence of 7-azaindole dimerization. J Phys Chem B 117:16196

    Article  CAS  PubMed  Google Scholar 

  51. Geiger LC, Ladanyi BM (1989) Molecular dynamics simulation study of nonlinear optical response of fluids. Chem Phys Lett 159(5–6):413

    Article  CAS  Google Scholar 

  52. Ryu S, Stratt RM (2004) A case study in the molecular interpretation of optical Kerr effect spectra: instantaneous-normal-mode analysis of the OKE spectrum of liquid benzene. J Phys Chem B 108(21):6782

    Article  CAS  Google Scholar 

  53. Torii H, Tasumi M (2000) Low-wavenumber vibrational dynamics of liquid formamide and N-methylformamide: molecular dynamics and instantaneous normal mode analysis. J Phys Chem A 104(18):4174

    Article  CAS  Google Scholar 

  54. Saito S, Ohmine I (1997) Third order nonlinear response of liquid water. J Chem Phys 106(12):4889

    Article  CAS  Google Scholar 

  55. Shirota H, Kakinuma S, Takahashi K, Tago A, Jeong H, Fujisawa T (2016) Ultrafast dynamics in aromatic cation based ionic liquids: a femtosecond Raman-induced Kerr effect spectroscopic study. Bull Chem Soc Jpn 89(9):1106

    Article  CAS  Google Scholar 

  56. Shirota H, Ando M, Takahashi K, Kakinuma S (2020) Ultrafast dynamics in nonaromatic cation based ionic liquids: a femtosecond Raman-induced Kerr effect spectroscopic study. Bull Chem Soc Jpn 93(12):1520

    Article  Google Scholar 

  57. McMorrow D, Lotshaw WT (1993) Evidence for low-frequency (~15 cm−1) collective modes in benzene and pyridine liquids. Chem Phys Lett 201(1–4):369

    Article  CAS  Google Scholar 

  58. Chang YJ, Castner EW Jr (1996) Intermolecular dynamics of substituted benzene and cyclohexane liquids, studied by femtosecond nonlinear-optical polarization spectroscopy. J Phys Chem 100(9):3330

    Article  CAS  Google Scholar 

  59. Smith NA, Lin SJ, Meech SR, Shirota H, Yoshihara K (1997) Ultrafast dynamics of liquid anilines studied by the optical Kerr effect. J Phys Chem A 101(50):9578

    Article  CAS  Google Scholar 

  60. Smith NA, Meech SR (2000) Ultrafast dynamics of polar monosubstituted benzene liquids studied by the femtosecond optical Kerr effect. J Phys Chem A 104(18):4223

    Article  CAS  Google Scholar 

  61. Rajian JR, Hyun BR, Quitevis EL (2004) Intermolecular spectrum of liquid biphenyl studied by optical Kerr effect spectroscopy. J Phys Chem A 108(46):10107

    Article  CAS  Google Scholar 

  62. Loughnane BJ, Scodinu A, Fourkas JT (2006) Temperature-dependent optical Kerr effect spectroscopy of aromatic liquids. J Phys Chem B 110(11):5708

    Article  CAS  PubMed  Google Scholar 

  63. Zhong Q, Fourkas JT (2008) Shape and electrostatic effects in optical Kerr effect spectroscopy of aromatic liquids. J Phys Chem B 112(48):15342

    Article  CAS  PubMed  Google Scholar 

  64. Kakinuma S, Shirota H (2015) Dynamic Kerr effect study on six-membered-ring molecular liquids: benzene, 1,3-cyclohexadiene, 1,4-cyclohexadiene, cyclohexene, and cyclohexane. J Phys Chem B 119:4713

    Article  CAS  PubMed  Google Scholar 

  65. Neelakandan M, Pant D, Quitevis EL (1997) Structure and intermolecular dynamics of liquids: femtosecond optical Kerr effect measurements in nonpolar fluorinated benzenes. J Phys Chem A 101(16):2936

    Article  CAS  Google Scholar 

  66. Elola MD, Ladanyi BM, Scodinu A, Loughnane BJ, Fourkas JT (2005) Effects of molecular association on polarizability relaxation in liquid mixtures of benzene and hexafluorobenzene. J Phys Chem B 109(50):24085

    Article  CAS  PubMed  Google Scholar 

  67. Ratajska-Gadomska B, Gadomski W, Wiewior P, Radzewicz C (1998) A femtosecond snapshot of crystalline order in molecular liquids. J Chem Phys 108(20):8489

    Article  CAS  Google Scholar 

  68. Ratajska-Gadomska B (2002) Temperature evolution of the low-frequency optical Kerr effect spectra of liquid benzene in quasicrystalline approach. J Chem Phys 116(11):4563

    Article  CAS  Google Scholar 

  69. Wilkes JS, Zaworotko MJ (1992) Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem Commun 13:965

    Article  Google Scholar 

  70. Wilkes JS (2002) A short history of ionic liquids - from molten salts to neoteric solvents. Green Chem 4(2):73

    Article  CAS  Google Scholar 

  71. Wasserscheid P, Welton T (eds) (2008) Ionic liquids in synthesis, 2nd edn. Weinheim, Wiley-VCH

    Google Scholar 

  72. Wang Y, Voth GA (2005) Unique spatial heterogeneity in ionic liquids. J Am Chem Soc 127(35):12192

    Article  CAS  PubMed  Google Scholar 

  73. Canongia Lopes JNA, Padua AAH (2006) Nanostructural organization in ionic liquids. J Phys Chem B 110(7):3330

    Article  CAS  PubMed  Google Scholar 

  74. Triolo A, Russina O, Bleif H-J, Di Cola E (2007) Nanoscale segregation in room temperature ionic liquids. J Phys Chem B 111(18):4641

    Article  CAS  PubMed  Google Scholar 

  75. Hyun BR, Dzyuba SV, Bartsch RA, Quitevis EL (2002) Intermolecular dynamics of room-temperature ionic liquids: femtosecond optical Kerr effect measurements on 1-alkyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imides. J Phys Chem A 106(33):7579

    Article  CAS  Google Scholar 

  76. Rajian JR, Li SF, Bartsch RA, Quitevis EL (2004) Temperature-dependence of the low-frequency spectrum of 1-pentyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide studied by optical Kerr effect spectroscopy. Chem Phys Lett 393(4–6):372

    Article  Google Scholar 

  77. Xiao D, Rajian JR, Li SF, Bartsch RA, Quitevis EL (2006) Additivity in the optical Kerr effect spectra of binary ionic liquid mixtures: implications for nanostructural organization. J Phys Chem B 110(33):16174

    Article  CAS  PubMed  Google Scholar 

  78. Xiao D, Rajian JR, Cady A, Li S, Bartsch RA, Quitevis EL (2007) Nanostructural organization and anion effects on the temperature dependence of the optical Kerr Effect spectra of ionic liquids. J Phys Chem B 111(18):4669

    Article  CAS  PubMed  Google Scholar 

  79. Xiao D, Rajian JR, Hines LG Jr, Li S, Bartsch RA, Quitevis EL (2008) Nanostructural organization and anion effects in the optical Kerr effect spectra of binary ionic liquid mixtures. J Phys Chem B 112(42):13316

    Article  CAS  PubMed  Google Scholar 

  80. Xiao D, Hines LG Jr, Li S, Bartsch RA, Quitevis EL, Russina O, Triolo A (2009) Effect of cation symmetry and alkyl chain length on the structure and intermolecular dynamics of 1,3-dialkylimidazolium bis(trifluoromethanesulfonyl)amide ionic liquids. J Phys Chem B 113(18):6426

    Article  CAS  PubMed  Google Scholar 

  81. Xiao D, Hines LG Jr, Bartsch RA, Quitevis EL (2009) Intermolecular vibrational motions of solute molecules confined in nonpolar domains of ionic liquids. J Phys Chem B 113(14):4544

    Article  CAS  PubMed  Google Scholar 

  82. Russina O, Triolo A, Gontrani L, Caminiti R, Xiao D, Hines LG Jr, Bartsch RA, Quitevis EL, Plechkova N, Seddon KR (2009) Morphology and intermolecular dynamics of 1-alkyl-3-methylimidazolium bis{(trifluoromethane)sulfonyl}amide ionic liquids: structural and dynamic evidence of nanoscale segregation. J Phys Condens Matter 21:424121

    Article  Google Scholar 

  83. Xiao D, Hines LG Jr, Holtz MW, Song K, Bartsch RA, Quitevis EL (2010) Effect of cation symmetry on the low-frequency spectra of imidazolium ionic liquids: OKE and Raman spectroscopic measurements and DFT calculations. Chem Phys Lett 497:37

    Article  CAS  Google Scholar 

  84. Yang P, Voth GA, Xiao D, Hines LG Jr, Bartsch RA, Quitevis EL (2011) Nanostructural organization in carbon disulfide/ionic liquid mixtures: molecular dynamics simulations and optical Kerr effect spectroscopy. J Chem Phys 135(3):034502

    Article  PubMed  Google Scholar 

  85. Zheng W, Mohammed A, Larry G, Hines J, Xiao D, Martinez OJ, Bartsch RA, Simon SL, Russina O, Triolo A, Quitevis EL (2011) Effect of cation symmetry on the morphology and physicochemical properties of imidazolium ionic liquids. J Phys Chem B 115:6572

    Article  CAS  PubMed  Google Scholar 

  86. Bardak F, Xiao D, Larry G, Hines J, Son P, Bartsch RA, Quitevis EL, Yang P, Voth GA (2012) Nanostructural organization in acetonitrile/ionic liquid mixtures: molecular dynamics simulations and optical Kerr effect spectroscopy. ChemPhysChem 13(7):1687

    Article  CAS  PubMed  Google Scholar 

  87. Lynden-Bell RM, Xue L, Tamas G, Quitevis EL (2014) Local structure and intermolecular dynamics of an equimolar benzene and 1,3-dimethylimidazolium bis[(trifluoromethane)sulfonyl]amide mixture: molecular dynamics simulations and OKE spectroscopic measurements. J Chem Phys 141(4):044506

    Article  PubMed  Google Scholar 

  88. Xue L, Tamas G, Gurung E, Quitevis EL (2014) Probing the interplay between electrostatic and dispersion interactions in the solvation of nonpolar nonaromatic solute molecules in ionic liquids: an OKE spectroscopic study of CS2/[CnC1im][NTf2] mixtures (n = 1-4). J Chem Phys 140(16):164512

    Article  PubMed  Google Scholar 

  89. Xue L, Tamas G, Matthews RP, Stone AJ, Hunt PA, Quitevis EL, Lynden-Bell RM (2015) An OHD-RIKES and simulation study comparing a benzylmethylimidazolium ionic liquid with an equimolar mixture of dimethylimidazolium and benzene. Phys Chem Chem Phys 17(15):9973

    Article  CAS  PubMed  Google Scholar 

  90. Xue L, Tamas G, Quitevis EL (2016) Comparative OHD-RIKES study of the low-frequency (0-250 cm−1) vibrational dynamics of dibenzyl- and monobenzyl-substituted imidazolium ionic liquids and benzene/dimethylimidazolium mixtures. ACS Sustain Chem Eng 4(2):514

    Article  CAS  Google Scholar 

  91. Lynden-Bell RM, Quitevis EL (2018) A simulation study of CS2 solutions in two related ionic liquids with dications and monocations. J Chem Phys 148(19):193844

    Article  CAS  PubMed  Google Scholar 

  92. Gurung E, Meng D, Xue L, Tamas G, Lynden-Bell RM, Quitevis EL (2018) Optical Kerr effect spectroscopy of CS2 in monocationic and dicationic ionic liquids: insights into the intermolecular interactions in ionic liquids. Phys Chem Chem Phys 20(41):26558

    Article  CAS  PubMed  Google Scholar 

  93. Giraud G, Gordon CM, Dunkin IR, Wynne K (2003) The effects of anion and cation substitution on the ultrafast solvent dynamics of ionic liquids: a time-resolved optical Kerr-effect spectroscopic study. J Chem Phys 119(1):464

    Article  CAS  Google Scholar 

  94. Turton DA, Hunger J, Stoppa A, Hefter G, Thoman A, Walther M, Buchner R, Wynne K (2009) Dynamics of imidazolium ionic liquids from a combined dielectric relaxation and optical Kerr effect study: evidence for mesoscopic aggregation. J Am Chem Soc 131(31):11140

    Article  CAS  PubMed  Google Scholar 

  95. Sonnleitner T, Turton DA, Waselikowski S, Hunger J, Stoppa A, Walther M, Wynne K, Buchner R (2014) Dynamics of RTILs: a comparative dielectric and OKE study. J Mol Liq 192:19

    Article  CAS  Google Scholar 

  96. Sonnleitner T, Turton DA, Hefter G, Ortner A, Waselikowski S, Walther M, Wynne K, Buchner R (2015) Ultra-broadband dielectric and optical Kerr-effect study of the ionic liquids ethyl and propylammonium nitrate. J Phys Chem B 119:8826

    Article  CAS  PubMed  Google Scholar 

  97. Reichenbach J, Ruddell SA, Gonzalez-Jimenez M, Lemes J, Turton DA, France DJ, Wynne K (2017) Phonon-like hydrogen-bond modes in protic ionic liquids. J Am Chem Soc 139(21):7160

    Article  CAS  PubMed  Google Scholar 

  98. Shirota H, Funston AM, Wishart JF, Castner EW Jr (2005) Ultrafast dynamics of pyrrolidinium cation ionic liquids. J Chem Phys 122(18):184512

    Article  PubMed  Google Scholar 

  99. Shirota H, Castner EW Jr (2005) Physical properties and intermolecular dynamics of an ionic liquid compared with its isoelectronic neutral binary solution. J Phys Chem A 109(42):9388

    Article  CAS  PubMed  Google Scholar 

  100. Shirota H, Castner EW Jr (2005) Why are viscosities lower for ionic liquids with −CH2Si(CH3)3 vs −CH2C(CH3)3 substitutions on the imidazolium cations? J Phys Chem B 109(46):21576

    Article  CAS  PubMed  Google Scholar 

  101. Shirota H, Wishart JF, Castner EW Jr (2007) Intermolecular interactions and dynamics of room temperature ionic liquids that have silyl- and siloxy-substituted imidazolium cations. J Phys Chem B 111(18):4819

    Article  CAS  PubMed  Google Scholar 

  102. Shirota H, Nishikawa K, Ishida T (2009) Atom substitution effects of [XF6] in ionic liquids. 1. Experimental study. J Phys Chem B 113(29):9831

    Article  CAS  PubMed  Google Scholar 

  103. Fujisawa T, Nishikawa K, Shirota H (2009) Comparison of interionic/intermolecular vibrational dynamics between ionic liquids and concentrated electrolyte solutions. J Chem Phys 131(24):244519

    Article  PubMed  Google Scholar 

  104. Shirota H, Fukazawa H, Fujisawa T, Wishart JF (2010) Heavy atom substitution effects in non-aromatic ionic liquids: ultrafast dynamics and physical properties. J Phys Chem B 114(29):9400

    Article  CAS  PubMed  Google Scholar 

  105. Fukazawa H, Ishida T, Shirota H (2011) Ultrafast dynamics in 1-butyl-3-methylimidazolium-based ionic liquids: a femtosecond Raman-induced Kerr effect spectroscopic study. J Phys Chem B 115:4621

    Article  CAS  PubMed  Google Scholar 

  106. Shirota H, Ishida T (2011) Microscopic aspects in dicationic ionic liquids through the low-frequency spectra by femtosecond Raman-induced Kerr effect spectroscopy. J Phys Chem B 115(37):10860

    Article  CAS  PubMed  Google Scholar 

  107. Shirota H, Biswas R (2012) Intermolecular/interionic vibrations of 1-methyl-3-n-octylimidazolium tetrafluoroborate ionic liquid and H2O mixtures. J Phys Chem B 116(46):13765

    Article  CAS  PubMed  Google Scholar 

  108. Shirota H (2012) Comparison of low-frequency spectra between aromatic and nonaromatic cation based ionic liquids using femtosecond Raman-induced Kerr effect spectroscopy. ChemPhysChem 13(7):1638

    Article  CAS  PubMed  Google Scholar 

  109. Shirota H (2013) Intermolecular/interionic vibrations of 1-methyl-3-n-octylimidazolium tetrafluoroborate ionic liquid and benzene mixtures. J Phys Chem B 117:7985

    Article  CAS  PubMed  Google Scholar 

  110. Shirota H, Matsuzaki H, Ramati S, Wishart JF (2015) Effects of aromaticity in cations and their functional groups on the low-frequency spectra and physical properties of ionic liquids. J Phys Chem B 119(29):9173

    Article  CAS  PubMed  Google Scholar 

  111. Shirota H, Kakinuma S (2015) Temperature dependence of low-frequency spectra in molten bis(trifluoromethylsulfonyl)amide salts of imidazolium cations studied by femtosecond Raman-induced Kerr effect spectroscopy. J Phys Chem B 119:9835

    Article  CAS  PubMed  Google Scholar 

  112. Shirota H, Kakinuma S, Itoyama Y, Umecky T, Takamuku T (2016) Effects of tetrafluoroborate and bis(trifluoromethylsulfonyl)amide anions on the microscopic structures of 1-methyl-3-octylimidazolium-based ionic liquids and benzene mixtures: a multiple approach by ATR-IR, NMR, and femtosecond Raman-induced Kerr effect spectroscopy. J Phys Chem B 120(3):513

    Article  CAS  PubMed  Google Scholar 

  113. Kakinuma S, Ishida T, Shirota H (2017) Femtosecond Raman-induced Kerr effect study of temperature-dependent intermolecular dynamics in imidazolium-based ionic liquids: effects of anion species and cation alkyl groups. J Phys Chem B 121(1):250

    Article  CAS  PubMed  Google Scholar 

  114. Kakinuma S, Shirota H (2018) Femtosecond Raman-induced Kerr effect study of temperature-dependent intermolecular dynamics in molten bis(trifluoromethylsulfonyl)amide salts: effects of cation species. J Phys Chem B 122(22):6033

    Article  CAS  PubMed  Google Scholar 

  115. Kakinuma S, Shirota H (2019) Femtosecond Raman-induced Kerr effect study of temperature-dependent intermolecular dynamics in pyrrolidinium-based ionic liquids: effects of anion species. J Phys Chem B 123(6):1307

    Article  CAS  PubMed  Google Scholar 

  116. Kakinuma S, Ramati S, Wishart JF, Shirota H (2018) Effects of aromaticity in cations and their functional groups on the temperature dependence of low-frequency spectrum. J Chem Phys 148(19):193805

    Article  PubMed  Google Scholar 

  117. Castner EW Jr, Margulis CJ, Maroncelli M, Wishart JF (2011) Ionic liquids: structure and photochemical reactions. Annu Rev Phys Chem 62:85

    Article  CAS  PubMed  Google Scholar 

  118. Russina O, Triolo A, Gontrani L, Caminiti R (2012) Mesoscopic structural heterogeneities in room-temperature ionic liquids. J Phys Chem Lett 3(1):27

    Article  CAS  Google Scholar 

  119. Araque JC, Hettige JJ, Margulis CJ (2015) Modern room temperature ionic liquids, a simple guide to understanding their structure and how it may relate to dynamics. J Phys Chem B 119(40):12727

    Article  CAS  PubMed  Google Scholar 

  120. Triolo A, Russina O, Fazio B, Appetecchi GB, Carewska M, Passerini S (2009) Nanoscale organization in piperidinium-based room temperature ionic liquids. J Chem Phys 130(16):164521

    Article  PubMed  Google Scholar 

  121. Iimori T, Iwahashi T, Kanai K, Seki K, Sung J, Kim D, Hamaguchi H, Ouchi Y (2007) Local structure at the air/liquid interface of room-temperature ionic liquids probed by infrared-visible sum frequency generation vibrational spectroscopy: 1-Alkyl-3-methylimidazolium tetrafluoroborates. J Phys Chem B 111(18):4860

    Article  CAS  PubMed  Google Scholar 

  122. Aliaga C, Baker GA, Baldelli S (2008) Sum frequency generation studies of ammonium and pyrrolidinium ionic liquids based on the bis-trifluoromethanesulfonimide anion. J Phys Chem B 112(6):1676

    Article  CAS  PubMed  Google Scholar 

  123. Atkins P, de Paula J (2014) Atkins' physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  124. Steele WA (1976) The rotation of molecules in dense phases. Adv Chem Phys 34:1

    CAS  Google Scholar 

  125. Fukasawa T, Sato T, Watanabe J, Hama Y, Kunz W, Buchner R (2005) Relation between dielectric and low-frequency Raman spectra of hydrogen-bond liquids. Phys Rev Lett 95(19):197802

    Article  PubMed  Google Scholar 

  126. Nuss MC, Orenstein J (1998) Terahertz time-domain spectroscopy. In: Gruner G (ed) millimeter and submillimeter wave spectroscopy of solids, Chapter 2. Springer, Berlin, p 7

    Google Scholar 

  127. Ronne C, Jensby K, Loughnane BJ, Fourkas J, Faurskov Nielsen O, Keiding SR (2000) Temperature dependence of the dielectric function of C6H6(I) and C6H5CH3(I) measured with THz spectroscopy. J Chem Phys 113(9):3749

    Article  CAS  Google Scholar 

  128. Fumino K, Wulf A, Ludwig R (2008) The cation-anion interaction in ionic liquids probed by far-infrared spectroscopy. Angew Chem Int Ed Engl 47:3830

    Article  CAS  PubMed  Google Scholar 

  129. Fumino K, Wulf A, Ludwig R (2008) Strong, localized, and directional hydrogen bonds fluidize ionic liquids. Angew Chem Int Ed Engl 47:8731

    Article  CAS  PubMed  Google Scholar 

  130. Fumino K, Wulf A, Ludwig R (2009) Hydrogen bonding in protic ionic liquids: reminiscent of water. Angew Chem Int Ed Engl 48:3184

    Article  CAS  PubMed  Google Scholar 

  131. Roth C, Peppel T, Fumino K, Kockerling M, Ludwig R (2010) The importance of hydrogen bonds for the structure of ionic liquids: single-crystal X-ray diffraction and transmission and attenuated total reflection spectroscopy in the terahertz region. Angew Chem Int Ed Engl 49:10221

    Article  CAS  PubMed  Google Scholar 

  132. Wulf A, Fumino K, Ludwig R (2010) Spectroscopic evidence for an enhanced anion-cation interaction from hydrogen bonding in pure imidazolium ionic liquids. Angew Chem Int Ed Engl 49:449

    Article  CAS  PubMed  Google Scholar 

  133. Fumino K, Reimann S, Ludwig R (2014) Probing molecular interaction in ionic liquids by low frequency spectroscopy: Coulomb energy, hydrogen bonding and dispersion forces. Phys Chem Chem Phys 16(40):21903

    Article  CAS  PubMed  Google Scholar 

  134. Fumino K, Ludwig R (2014) Analyzing the interaction energies between cation and anion in ionic liquids: the subtle balance between Coulomb forces and hydrogen bonding. J Mol Liq 192:94

    Article  CAS  Google Scholar 

  135. Koddermann T, Fumino K, Ludwig R, Lopes JNC, Padua AAH (2009) What far-infrared spectra can contribute to the development of force fields for ionic liquids used in molecular dynamics simulations. ChemPhysChem 10(8):1181

    Article  PubMed  Google Scholar 

  136. Wulf A, Fumino K, Ludwig R, Taday PF (2010) Combined THz, FIR and Raman spectroscopy studies of imidazolium-based ionic liquids covering the frequency range 2-300 cm-1. ChemPhysChem 11(2):349

    Article  CAS  PubMed  Google Scholar 

  137. Tao G, Stratt RM (2006) Why does the intermolecular dynamics of liquid biphenyl so closely resemble that of liquid benzene? Molecular dynamics simulation of the optical-Kerr-effect spectra. J Phys Chem B 110(2):976

    Article  CAS  PubMed  Google Scholar 

  138. Patrick CR, Prosser GS (1960) A molecular complex of benzene and hexafluorobenzene. Nature 187:1021

    Article  CAS  Google Scholar 

  139. Castner EW Jr, Chang YJ, Chu YC, Walrafen GE (1995) The intermolecular dynamics of liquid water. J Chem Phys 102(2):653

    Article  CAS  Google Scholar 

  140. Palese S, Schilling L, Miller RJD, Staver PR, Lotshaw WT (1994) Femtosecond optical Kerr-effect studies of water. J Phys Chem 98(25):6308

    Article  CAS  Google Scholar 

  141. Tominaga K (1998) Off-resonant fifth and seventh order time-domain nonlinear spectroscopy on vibrational dephasing in liquids. Adv Multi-Photon Process Spectrosc 11:127

    Article  CAS  Google Scholar 

  142. Saito S, Ohmine I (1998) Off-resonant fifth-order nonlinear response of water and CS2: analysis based on normal modes. J Chem Phys 108(1):240

    Article  CAS  Google Scholar 

  143. Saito S, Ohmine I (2006) Fifth-order two-dimensional Raman spectroscopy of liquid water, crystalline ice lh and amorphous ices: sensitivity to anharmonic dynamics and local hydrogen bond network structure. J Chem Phys 125(8):084506

    Article  PubMed  Google Scholar 

  144. Chang YJ, Castner EW Jr (1994) Deuterium-isotope effects on the ultrafast solvent relaxation of formamide and N,N-dimethylformamide. J Phys Chem 98(39):9712

    Article  CAS  Google Scholar 

  145. Elola MD, Ladanyi BM (2007) Intermolecular polarizability dynamics of aqueous formamide liquid mixtures studied by molecular dynamics simulations. J Chem Phys 126(8):084504

    Article  PubMed  Google Scholar 

  146. Ishida T, Nishikawa K, Shirota H (2009) Atom substitution effects of [XF6] in ionic liquids. 2. Theoretical study. J Phys Chem B 113(29):9840

    Article  CAS  PubMed  Google Scholar 

  147. Ishida T, Shirota H (2013) Dicationic versus monocationic ionic liquids: distinctive ionic dynamics and dynamical heterogeneity. J Phys Chem B 117(4):1136

    Article  CAS  PubMed  Google Scholar 

  148. Hu Z, Huang X, Annapureddy HVR, Margulis CJ (2008) Molecular dynamics study of the temperature-dependent optical Kerr effect spectra and intermolecular dynamics of room temperature ionic liquid 1-methoxyethylpyridinium dicyanoamide. J Phys Chem B 112(26):7837

    Article  CAS  PubMed  Google Scholar 

  149. Sarangi SS, Reddy SK, Balasubramanian S (2011) Low frequency vibrational modes of room temperature ionic liquids. J Phys Chem B 115:1874

    Article  CAS  PubMed  Google Scholar 

  150. Polok K, Beisert M, Swiatek A, Maity N, Piatkowski P, Gadomski W, Miannay FA, Idrissi A (2020) Dynamics in the BMIM PF6/acetonitrile mixtures observed by femtosecond optical Kerr effect and molecular dynamics simulations. Phys Chem Chem Phys 22(42):24544

    Article  CAS  PubMed  Google Scholar 

  151. Urahata SM, Ribeiro MCC (2005) Single particle dynamics in ionic liquids of 1-alkyl-3-methylimidazolium cations. J Chem Phys 122(2):024511

    Article  PubMed  Google Scholar 

  152. Ando M, Kawano M, Tashiro A, Takamuku T, Shirota H (2020) Low-frequency spectra of 1-methyl-3-octylimidazolium tetrafluoroborate mixtures with methanol, acetonitrile, and imethyl sulfoxide: a combined study of femtosecond Raman-induced Kerr effect spectroscopy and molecular dynamics simulations. J Phys Chem B 124(36):7857

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank colleagues Dr. James Wishart, Ms. Sharon Ramati (Brookhaven National Laboratory), Dr. Tomotsumi Fujisawa (Chiba University, now Saga University), Mr. Hiroki Fukazawa, Mr. Tatsuya Kato, Dr. Shohei Kakinuma, Mr. Hironori Matsuzaki, Mr. Kotaro Takahashi, Mr. Akito Tago, Mr. Hocheon Jeong, and Mr. Masatoshi Ando (Chiba University). The studies conducted in the author’s group discussed in this chapter were supported by JSPS KAKENHI (19559001, 21685001, 15 K05377, and 19 K05382), the JGC-S Scholarship Foundation, the Izumi Science and Technology Foundation, the Iwatani Naoji Foundation, the Shimadzu Science Foundation, and the Takahashi Industrial and Economic Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Shirota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shirota, H. (2021). Intermolecular Vibrations in Aprotic Molecular Liquids and Ionic Liquids. In: Nishiyama, K., Yamaguchi, T., Takamuku, T., Yoshida, N. (eds) Molecular Basics of Liquids and Liquid-Based Materials. Physical Chemistry in Action. Springer, Singapore. https://doi.org/10.1007/978-981-16-5395-7_7

Download citation

Publish with us

Policies and ethics