Skip to main content

Structure and Dynamics of Liquids Investigated by Quantum Beam: Binary Solution, Solution Under High Pressure, and Confined Solution

  • Chapter
  • First Online:
Molecular Basics of Liquids and Liquid-Based Materials

Part of the book series: Physical Chemistry in Action ((PCIA))

  • 457 Accesses

Abstract

Information on the structure and dynamics of liquids is necessary for understanding the properties and chemical reactivities of liquids at the molecular level. The structure and dynamics of liquids are clarified through quantum beam (X-ray and neutron) scattering experiments, which can be compared with data obtained from theoretical calculations (e.g., MD simulation, MC, RISM). The elastic scattering can clarify the static structure, and the quasi-elastic and inelastic scattering can clarify the translational and rotational motions and intramolecular and intermolecular vibrations depending on the energy resolution of the instruments. A high flux beam produced by synchrotron radiation and a pulsed neutron facility can reduce the sample size and measurement time. Therefore, a structural analysis of a liquid becomes possible under extreme conditions (high pressure and temperate and confinement within in a nanospace). Under such extreme conditions, these liquids have different properties and chemical reactivities compared with those in bulk. By compression, the tetrahedral-like structure of water is bent and transformed into the simple liquid-like structure. Although water confined in the mesospace does not freeze, the tetrahedral-like structure of confined water is developed with decreasing temperature. The temperature dependence of water dynamics follows the Vogel–Tammann–Fulcher (VTF) equation, where the relaxation time of molecular motion diverges at the ideal glass temperature. In this chapter, recent studies on the structure and dynamics of liquid molecules in binary solutions, at high temperature and high pressure, and in a confined environment are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sivia D (2011) Elementary scattering theory for X-ray and neutron users. Oxford University Press, Oxford

    Book  Google Scholar 

  2. Faber TE, Ziman JM (1965) A theory of the electrical properties of liquid metals: III. Resistivity of binary alloys. Philos Mag 11(109):153–173

    Article  CAS  Google Scholar 

  3. Neutron scattering lengths and cross-sections of the NIST center for neutron scattering. https://www.ncnr.nist.gov/resources/n-lengths/

  4. Seto M, Masuda R, Higashitaniguchi S, Kitao S, Kobayashi Y, Inaba C, Mitsui T, Yoda Y (2009) Synchrotron radiation-based Mössbauer spectroscopy. Phys Rev Lett 102(21):217602

    Article  PubMed  Google Scholar 

  5. Dierker SB, Pindak R, Fleming RM, Robinson IK, Berman L (1995) X-ray photon correlation spectroscopy study of Brownian motion of gold colloids in glycerol. Phys Rev Lett 75(3):449

    Article  CAS  PubMed  Google Scholar 

  6. Zoppi U, Balucani M (1995) Dynamics of the liquid state. Clarendon Press, New York

    Google Scholar 

  7. Debenedetti PG (2003) Supercooled and glassy water. J Phys Condens Matter 15(45):R1669

    Article  CAS  Google Scholar 

  8. Bett KE, Cappi JB (1965) Effect of pressure on the viscosity of water. Nature 207(4997):620–621

    Article  CAS  Google Scholar 

  9. Klotz S (2013) Techniques in high pressure neutron scattering. CRC Press, Boca Raton, FL

    Google Scholar 

  10. Yamaguchi T, Ohzono H, Yamagami M, Yamanaka K, Yoshida K, Wakita H (2010) Ion hydration in aqueous solutions of lithium chloride, nickel chloride, and caesium chloride in ambient to supercritical water. J Mol Liq 153(1):2–8

    Article  CAS  Google Scholar 

  11. Okuchi T, Hoshikawa A, Ishigaki T (2015) Forge-hardened TiZr null-matrix alloy for neutron scattering under extreme conditions. Metals 5(4):2340–2350

    Article  Google Scholar 

  12. Yamaguchi T, Fujimura K, Uchi K, Yoshida K, Katayama Y (2012) Structure of water from ambient to 4 GPa revealed by energy-dispersive X-ray diffraction combined with empirical potential structure refinement modeling. J Mol Liq 176:44–51

    Article  CAS  Google Scholar 

  13. Yoshida K, Yamamoto N, Hosokawa S, Baron AQ, Yamaguchi T (2007) Collective dynamics of sub-and supercritical methanol by inelastic X-ray scattering. Chem Phys Lett 440(4–6):210–214

    Article  CAS  Google Scholar 

  14. Katayama Y, Hattori T, Saitoh H, Ikeda T, Aoki K, Fukui H, Funakoshi K (2010) Structure of liquid water under high pressure up to 17 GPa. Phys Rev B 81(1):014109

    Article  Google Scholar 

  15. Sano-Furukawa A, Hattori T, Arima H, Yamada A, Tabata S, Kondo M, Nakamura A, Kagi H, Yagi T (2014) Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments. Rev Sci Instrum 85(11):113905

    Article  CAS  PubMed  Google Scholar 

  16. Yamaguchi T (2020) Fukuoka Univ Sci Rep 50(2):78–91

    CAS  Google Scholar 

  17. Franks F (1990) Water science review. Cambridge University Press, Cambridge

    Book  Google Scholar 

  18. Takamuku T, Yamaguchi T, Asato M, Matsumoto M, Nishi N (2000) Structure of clusters in methanol-water binary solutions studied by mass spectrometry and X-ray diffraction. Z Naturforsch, A 55(5):513–525

    Article  CAS  Google Scholar 

  19. Nishi N, Takahashi S, Matsumoto M, Tanaka A, Muraya K, Takamuku T, Yamaguchi T (1995) Hydrogen-bonded cluster formation and hydrophobic solute association in aqueous solutions of ethanol. J Phys Chem B 99(1):462–468

    Article  CAS  Google Scholar 

  20. Matsumoto M, Nishi N, Furusawa T, Saita M, Takamuku T, Yamagami M, Yamaguchi T (1995) Structure of clusters in ethanol–water binary solutions studied by mass spectrometry and X-ray diffraction. Bull Chem Soc Jpn 68(7):1775–1783

    Article  CAS  Google Scholar 

  21. Takamuku T, Maruyama H, Watanabe K, Yamaguchi T (2004) Structure of 1-propanol–water mixtures investigated by large-angle X-ray scattering technique. J Solut Chem 33(6–7):641–660

    Article  CAS  Google Scholar 

  22. Nakanishi K (1960) Partial molal volumes of butyl alcohols and of related compounds in aqueous solution. Bull Chem Soc Jpn 33(6):793–797

    Article  CAS  Google Scholar 

  23. Bowron DT, Finney JL, Soper AK (1998) Structural investigation of solute−solute interactions in aqueous solutions of tertiary butanol. J Phys Chem B 102(18):3551–3563

    Article  CAS  Google Scholar 

  24. Soper AK (1996) Empirical potential Monte Carlo simulation of fluid structure. Chem Phys 202(2–3):295–306

    Article  CAS  Google Scholar 

  25. Yoshida K, Yamaguchi T, Kovalenko A, Hirata F (2002) Structure of tert-butyl alcohol−water mixtures studied by the RISM theory. J Phys Chem B 106(19):5042–5049

    Article  CAS  Google Scholar 

  26. Müller N, Vogel M (2019) Relation between concentration fluctuations and dynamical heterogeneities in binary glass-forming liquids: a molecular dynamics simulation study. J Chem Phys 150(6):064502

    Article  PubMed  Google Scholar 

  27. Mallamace F, Micali N, D’Arrigo G (1991) Dynamical effects of supramolecular aggregates in water-butoxyethanol mixtures studied by viscosity measurements. Phys Rev A 44(10):6652

    Article  CAS  PubMed  Google Scholar 

  28. D'Arrigo G, Teixeira J (1990) Small-angle neutron scattering study of D2O–alcohol solutions. J Chem Soc Faraday Trans 86(9):1503–1509

    Article  CAS  Google Scholar 

  29. Yoshida K, Yamaguchi T, Otomo T, Nagao M, Seto H, Takeda T (2005) Concentration fluctuations and cluster dynamics of 2-butoxyethanol–water mixtures by small-angle neutron scattering and neutron spin echo techniques. J Mol Liq 119(1–3):125–131

    Article  CAS  Google Scholar 

  30. Ito N, Fujiyama T, Udagawa Y (1983) A study of local structure formation in binary solutions of 2-butoxyethanol and water by Rayleigh scattering and Raman spectra. Bull Chem Soc Jpn 56:379–385

    Article  CAS  Google Scholar 

  31. Schmitz J, Belkoura L, Woermann D (1994) Diffusivity in 2-butoxyethanol/water mixtures of noncritical composition approaching the liquid/liquid coexistence curve. J Chem Phys 101(1):476–479

    Article  CAS  Google Scholar 

  32. Schmitz J, Belkoura L, Woermann D (1995) Concentration fluctuations in the vicinity of the liquid/liquid coexistence curve of a binary mixture with a lower critical point. Ber Bunsenges Phys Chem 99(6):848–852

    Article  CAS  Google Scholar 

  33. Ogawa M, Ishii Y, Ohtori N (2016) Dynamic behavior of mesoscopic concentration fluctuations in an aqueous solution of 1-propanol by MD simulation. Chem Lett 45(1):98–100

    Article  CAS  Google Scholar 

  34. Boon JP, Yip S (1980) Molecular dynamics. McGraw-Hill, New York

    Google Scholar 

  35. Rahman A, Stillinger FH (1971) Molecular dynamics study of liquid water. J Chem Phys 55(7):3336–3359

    Article  CAS  Google Scholar 

  36. Teixeira J, Bellissent-Funel MC, Chen SH, Dorner B (1985) Observation of new short-wavelength collective excitations in heavy water by coherent inelastic neutron scattering. Phys Rev Lett 54(25):2681

    Article  CAS  PubMed  Google Scholar 

  37. Formisano F, De Francesco A, Guarini E, Laloni A, Orecchini A, Petrillo C, Sacchetti F (2013) The neutron spectrometer BRISP: a new approach to the study of excitations in condensed matter at low momentum transfer in the milli-eV energy region. J Phys Soc Japan 82(Suppl A):SA028

    Article  Google Scholar 

  38. Itoh S, Endoh Y, Yokoo T, Kawana D, Kaneko Y, Tokura Y, Fujita M (2013) Neutron Brillouin scattering with pulsed spallation neutron source – spin-wave excitations from ferromagnetic powder samples. J Phys Soc Japan 82(4):043001

    Article  Google Scholar 

  39. Iwashita T, Wu B, Chen WR, Tsutsui S, Baron AQ, Egami T (2017) Seeing real-space dynamics of liquid water through inelastic x-ray scattering. Sci Adv 3(12):e1603079

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yamaguchi T, Yoshida K, Yamamoto N, Hosokawa S, Inui M, Baron AQR, Tsutsui S (2005) Collective dynamics of supercritical water. J Phys Chem Solids 66(12):2246–2249

    Article  CAS  Google Scholar 

  41. Fak B, Dorner B (1992) Institute Laue Langevin Report, 92FA008S (Grenoble, France)

    Google Scholar 

  42. Sette F, Ruocco G, Krisch M, Masciovecchio C, Verbeni R (1995) Collective dynamics in water by inelastic x-ray scattering. Phys Rev Lett 75:850

    Article  CAS  PubMed  Google Scholar 

  43. Ruocco G, Sette F, Bergmann U, Krisch M, Masciovecchlo C, Mazzacurati V, Signorelli G, Verbeni R (1996) Equivalence of sound velocity in water and ice at mesoscopic wavelengths. Nature 379(6565):521–523

    Article  Google Scholar 

  44. Balucani U, Ruocco G, Torcini A, Vallauri R (1993) Fast sound in liquid water. Phys Rev E 47(3):1677

    Article  CAS  Google Scholar 

  45. Bodensteiner T, Morkel C, Gläser W, Dorner B (1992) Collective dynamics in liquid cesium near the melting point. Phys Rev A 45(8):5709

    Article  CAS  PubMed  Google Scholar 

  46. Krisch M, Loubeyre P, Ruocco G, Sette F, Cunsolo A, D’Astuto M, Verbeni R (2002) Pressure evolution of the high-frequency sound velocity in liquid water. Phys Rev Lett 89(12):125502

    Article  CAS  PubMed  Google Scholar 

  47. Scopigno T, Balucani U, Ruocco G, Sette F (2000) Density fluctuations in molten lithium: inelastic X-ray scattering study. J Phys Condens Matter 12(37):8009

    Article  CAS  Google Scholar 

  48. Yoshida K, Fukuyama N, Yamaguchi T, Hosokawa S, Uchiyama H, Tsutsui S, Baron AQ (2017) Inelastic X-ray scattering on liquid benzene analyzed using a generalized Langevin equation. Chem Phys Lett 680:1–5

    Article  CAS  Google Scholar 

  49. Yoshida K, Yamaguchi T (2019) Generalized Langevin analysis of inelastic X-ray scattering for copper/ethylene glycol nanofluid. Chem Phys Lett 718:74–79

    Article  CAS  Google Scholar 

  50. Yamaguchi T, Yoshida K, Yamaguchi T, Nagao M, Faraone A, Seki S (2017) Decoupling between the temperature-dependent structural relaxation and shear viscosity of concentrated lithium electrolyte. J Phys Chem B 121(37):8767–8773

    Article  CAS  PubMed  Google Scholar 

  51. Petry W, Bartsch E, Fujara F, Kiebel M, Sillescu H, Farago BZ (1991) Dynamic anomaly in the glass transition region of orthoterphenyl. Z Phys B Condens Matter 83:175–184

    Article  CAS  Google Scholar 

  52. Wuttke J, Petry W, Pouget S (1996) Structural relaxation in viscous glycerol: coherent neutron scattering. J Chem Phys 105:5177–5182

    Article  CAS  Google Scholar 

  53. Franck EU (1987) The physics and chemistry of aqueous ionic solutions. Reidel, Dordrecht, p 337

    Book  Google Scholar 

  54. White HJ, Sengers JV, Neumann DB, Bellows JC (eds) (1995). Physical chemistry of aqueous systems, meeting the needs of industry. In: Proceedings of the 12th International Conference on the Properties of Water and Steam, Begell House, New York

    Google Scholar 

  55. Morita T, Kusano K, Ochiai SKI, Nishikawa K (2000) Study of inhomogeneity of supercritical water by small-angle X-ray scattering. J Chem Phys 112(9):4203–4211

    Article  CAS  Google Scholar 

  56. Franck EU, Roth K (1967) Infra-red absorption of HDO in water at high pressures and temperatures. Discuss Faraday Soc 43:108–114

    Article  Google Scholar 

  57. Ikushima Y, Hatakeda K, Saito N, Arai M (1998) An in situ Raman spectroscopy study of subcritical and supercritical water: the peculiarity of hydrogen bonding near the critical point. J Chem Phys 108(14):5855–5860

    Article  CAS  Google Scholar 

  58. Matubayasi N, Wakai C, Nakahara M (1997) Structural study of supercritical water. I. Nuclear magnetic resonance spectroscopy. J Chem Phys 107(21):9133–9140

    Article  CAS  Google Scholar 

  59. Salzmann CG (2018) Advances in the experimental exploration of water’s phase diagram. J Chem Phys 150:060901

    Article  Google Scholar 

  60. Poole PH, Sciortino F, Essmann U, Stanley HE (1992) Phase behavior of metastable water. Nature 360(6402):324–328

    Article  CAS  Google Scholar 

  61. Yamaguchi T, Nishino M, Yoshida K, Takumi M, Nagata K, Hattori T (2019) Ion hydration and association in aqueous calcium chloride solution in the GPa range. Eur J Inorg Chem 2019(8):1170–1177

    Article  CAS  Google Scholar 

  62. Colín-García M (2016) Hydrothermal vents and prebiotic chemistry: a review. Bol Soc Geol Mex 68(3):599–620

    Article  Google Scholar 

  63. Hayashi H, Hakuta Y (2010) Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials 3(7):3794–3817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hirschmann M, Kohlstedt D (2012) Water in Earth’s mantle. Phys Today 65:40–45

    Article  CAS  Google Scholar 

  65. Foustoukos DI (2016) On the solvation properties of supercritical electrolyte solutions. Chem Geol 447:191–198

    Article  CAS  Google Scholar 

  66. Fletcher NH (1970) Chemical physics of ice. Cambridge University Press, Cambridge

    Book  Google Scholar 

  67. Yoshida K, Soda A, Aso M, Ito K, Kittaka S, Inagaki S, Yamaguchi T (2011) Bunseki Kagaku 61(12):989–998. (in Japanese)

    Article  Google Scholar 

  68. Yoshida K, Yamaguchi T, Kittaka S, Bellissent-Funel MC, Fouquet P (2008) Thermodynamic, structural, and dynamic properties of supercooled water confined in mesoporous MCM-41 studied with calorimetric, neutron diffraction, and neutron spin echo measurements. J Chem Phys 129(5):054702

    Article  PubMed  Google Scholar 

  69. Kittaka S, Ishimaru S, Kuranishi M, Matsuda T, Yamaguchi T (2006) Enthalpy and interfacial free energy changes of water capillary condensed in mesoporous silica, MCM-41 and SBA-15. Phys Chem Chem Phys 8(27):3223–3231

    Article  CAS  PubMed  Google Scholar 

  70. Suzuki K (1980) Water and aqueous solutions (Mizu oyobi suiyoueki). Shuppan, Kyoristu. (in Japanese)

    Google Scholar 

  71. Mayer E, Hallbrucker A (1987) Cubic ice from liquid water. Nature 325:601

    Article  CAS  Google Scholar 

  72. Morishige K, Uematsu H (2005) The proper structure of cubic ice confined in mesopores. J Chem Phys 122(4):044711

    Article  Google Scholar 

  73. Aso M, Ito K, Sugino H, Yoshida K, Yamada T, Yamamuro O, Inagaki S, Yamaguchi T (2012) Thermal behavior, structure, and dynamics of low-temperature water confined in mesoporous organosilica by differential scanning calorimetry, X-ray diffraction, and quasi-elastic neutron scattering. Pure Appl Chem 85(1):289–305

    Article  Google Scholar 

  74. Dellerue S, Petrescu AJ, Smith JC, Bellissent-Funel MC (2001) Radially softening diffusive motions in a globular protein. Biophys J 81(3):1666–1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Faraone A, Liu KH, Mou CY, Zhang Y, Chen SH (2009) Single particle dynamics of water confined in a hydrophobically modified MCM-41-S nanoporous matrix. J Chem Phys 130(13):134512

    Article  PubMed  Google Scholar 

  76. Liu L, Chen SH, Faraone A, Yen CW, Mou CY (2005) Pressure dependence of fragile-to-strong transition and a possible second critical point in supercooled confined water. Phys Rev Lett 95(11):117802

    Article  PubMed  Google Scholar 

  77. Faraone A, Liu L, Cy M, Yen CW, Chewn SH (2004) Fragile-to-strong liquid transition in deeply supercooled confined water. J Chem Phys 121:10843

    Article  CAS  PubMed  Google Scholar 

  78. Mallamace F, Broccio M, Corsaro C, Faraone A, Wanderlingh U, Liu L, Mou CY, Chen SH (2006) The fragile-to-strong dynamic crossover transition in confined water: nuclear magnetic resonance results. J Chem Phys 124:161102

    Article  CAS  PubMed  Google Scholar 

  79. Sjöström J, Swenson J, Bergman R, Kittaka S (2008) Investigating hydration dependence of dynamics of confined water: monolayer, hydration water, and Maxwell–Wagner processes. J Chem Phys 128(15):154503

    Article  PubMed  Google Scholar 

  80. Mishima O, Calvert LD, Whalley E (1985) An apparent first-order transition between two amorphous phases of ice induced by pressure. Nature 314(6006):76–78

    Article  CAS  Google Scholar 

  81. Kumar P (2006) Breakdown of the Stokes–Einstein relation in supercooled water. Proc Natl Acad Sci U S A 103(35):12955–12956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Johari GP, Hallbrucker A, Mayer E (1987) Glass –liquid transition of hyperquenched water. Nature 330(6148):552–553

    Article  CAS  Google Scholar 

  83. Snyder LR, Kirkland JJ, Glajch JL (1997) Practical HPLC method development. Wiley-Interscience, New York

    Book  Google Scholar 

  84. Yoshida K, Inoue T, Torigoe M, Yamada T, Shibata K, Yamaguchi T (2018) Thermal behavior, structure, dynamic properties of aqueous glycine solutions confined in mesoporous silica MCM-41 were investigated by X-ray diffraction and quasi-elastic neutron scattering. J Chem Phys 149(12):124502

    Article  CAS  PubMed  Google Scholar 

  85. Teixeira J, Bellissent-Funel MC, Chen SH, Dianoux AJ (1985) Experimental determination of the nature of diffusive motions of water molecules at low temperatures. Phys Rev A 31(3):1913

    Article  CAS  Google Scholar 

  86. Takahara S, Sumiyama N, Kittaka S, Yamaguchi T, Bellissent-Funel MC (2005) Neutron scattering study on dynamics of water molecules in MCM-41. 2. Determination of the translational diffusion coefficient. J Phys Chem B 109(22):11231–11239

    Article  CAS  PubMed  Google Scholar 

  87. Takahara S, Nakano M, Kittaka S, Kuroda Y, Mori T, Hamano H, Yamaguchi T (1999) Neutron scattering study on dynamics of water molecules in MCM-41. J Phys Chem B 103(28):5814–5819

    Article  CAS  Google Scholar 

  88. Yamada T, Yonamine R, Yamada T, Kitagawa H, Tyagi M, Nagao M, Yamamuro O (2011) Quasi-elastic neutron scattering studies on dynamics of water confined in nanoporous copper rubeanate hydrates. J Phys Chem B 115(46):13563–13569

    Article  CAS  PubMed  Google Scholar 

  89. Costa D, Tougerti A, Tielens F, Gervais C, Stievano L, Lambert JF (2008) DFT study of the adsorption of microsolvated glycine on a hydrophilic amorphous silica surface. Phys Chem Chem Phys 10(42):6360–6368

    Article  CAS  PubMed  Google Scholar 

  90. Musso GE, Bottinelli E, Celi L, Magnacca G, Berlier G (2015) Influence of surface functionalization on the hydrophilic character of mesoporous silica nanoparticles. Phys Chem Chem Phys 17(21):13882–13894

    Article  CAS  PubMed  Google Scholar 

  91. Gupta R, Patey GN (2013) How aggregation in aqueous 2-butoxyethanol solutions is influenced by temperature. J Mol Liq 177:102–109

    Article  CAS  Google Scholar 

  92. Kuhs WF, Finney JL, Vettier C, Bliss DV (1984) Structure and hydrogen ordering in ices VI, VII, and VIII by neutron powder diffraction. J Chem Phys 81(8):3612–3623

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Yoshida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yoshida, K. (2021). Structure and Dynamics of Liquids Investigated by Quantum Beam: Binary Solution, Solution Under High Pressure, and Confined Solution. In: Nishiyama, K., Yamaguchi, T., Takamuku, T., Yoshida, N. (eds) Molecular Basics of Liquids and Liquid-Based Materials. Physical Chemistry in Action. Springer, Singapore. https://doi.org/10.1007/978-981-16-5395-7_4

Download citation

Publish with us

Policies and ethics