Skip to main content

Multiscale Solvation Theory for Nano- and Biomolecules

  • Chapter
  • First Online:
Molecular Basics of Liquids and Liquid-Based Materials

Part of the book series: Physical Chemistry in Action ((PCIA))

  • 495 Accesses

Abstract

Biomolecules play their role under the influence of water, ions, and cosolvents in a living system. Some nanomaterials self-assemble in solution to form specific structures. In these systems, chemical and physical processes such as chemical reactions, self-assembly, and molecular recognition occur continuously. To handle these systems in the field of computational science, a multiscale treatment is required because of the complexity of the system. For example, quantum chemical methods are necessary for describing chemical bond rearrangements and molecular dynamics for structural changes in a large molecule. In particular, the solution environment is a system consisting of complex interactions involving an infinite number of molecules, and statistical mechanics theory is necessary to describe the structure of the system. In this chapter, the solvation theory of molecular liquids and its multiscale implementations in quantum mechanics and molecular mechanics that make the methods applicable to nano- and biomolecular systems are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilson JH, Hunt T (2015) Molecular biology of the cell: the problems book, 6th edn. Garland Science, New York

    Google Scholar 

  2. Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications, 2nd edn. Academic Press, San Diego, CA

    Google Scholar 

  3. Hansen JP, McDonald IR (2006) Theory of simple liquids, 3rd edn. Academic Press, Amsterdam

    Google Scholar 

  4. Hirata F (ed) (2003) Molecular theory of solvation. Kluwer, Dordrecht

    Google Scholar 

  5. Gray CG, Gubbins KE (1984) Theory of molecular fluids volume 1: fundamentals. Clarendon Press, Oxford

    Book  Google Scholar 

  6. Blum L (1972) Invariant expansion. 2. Ornstein-Zernike equation for nonspherical molecules and an extended solution to mean spherical model. J Chem Phys 57(5):1862–1869

    Article  CAS  Google Scholar 

  7. Blum L, Torruella J (1972) Invariant expansion for 2-body correlations - thermodynamic functions, scattering, and Ornstein-Zernike equation. J Chem Phys 56(1):303–310

    Article  CAS  Google Scholar 

  8. Blum L (1973) Invariant expansion. 3. General solution of mean spherical model for neutral spheres with electrostatic interactions. J Chem Phys 58(8):3295–3303

    Article  CAS  Google Scholar 

  9. Fries PH, Patey GN (1985) The solution of the hypernetted-chain approximation for fluids of nonspherical particles - a general-method with application to dipolar hard-spheres. J Chem Phys 82(1):429–440

    Article  CAS  Google Scholar 

  10. Chandler D, Mccoy JD, Singer SJ (1986) Density functional theory of nonuniform polyatomic systems.2. Rational closures for integral-equations. J Chem Phys 85(10):5977–5982

    Article  CAS  Google Scholar 

  11. Chandler D, Mccoy JD, Singer SJ (1986) Density functional theory of nonuniform polyatomic systems. I. General formulation. J Chem Phys 85(10):5971–5976

    Article  CAS  Google Scholar 

  12. Hirata F, Rossky P (1981) An extended RISM equation for molecular polar fluids. Chem Phys Lett 83(2):329–334

    Article  CAS  Google Scholar 

  13. Beglov D, Roux B (1996) Solvation of complex molecules in a polar liquid: an integral equation theory. J Chem Phys 104(21):8678–8689

    Article  CAS  Google Scholar 

  14. Kovalenko A, Hirata F (1998) Three-dimensional density profiles of water in contact with a solute of arbitrary shape: a RISM approach. Chem Phys Lett 290(1–3):237–244

    Article  CAS  Google Scholar 

  15. Kovalenko A, Hirata F (1999) Self-consistent description of a metal-water interface by the Kohn-Sham density functional theory and the three-dimensional reference interaction site model. J Chem Phys 110(20):10095–10112

    Article  CAS  Google Scholar 

  16. Yokogawa D, Sato H, Sakaki S (2005) A new method to reconstruct three-dimensional spatial distribution function from radial distribution function in solvation structure. J Chem Phys 123(21):211102

    Article  PubMed  Google Scholar 

  17. Yokogawa D, Sato H, Sakaki S (2006) An integral equation theory for 3D solvation structure: a new procedure free from 3D Fourier transform. Chem Phys Lett 432(4–6):595–599

    Article  CAS  Google Scholar 

  18. Yokogawa D, Sato H, Imai T, Sakaki S (2009) A highly parallelizable integral equation theory for three dimensional solvent distribution function: application to biomolecules. J Chem Phys 130(6):064111

    Article  PubMed  Google Scholar 

  19. Ishizuka R, Yoshida N (2012) Application of efficient algorithm for solving six-dimensional molecular Ornstein-Zernike equation. J Chem Phys 136(11):114106

    Article  CAS  PubMed  Google Scholar 

  20. Ishizuka R, Yoshida N (2013) Extended molecular Ornstein-Zernike integral equation for fully anisotropic solute molecules: formulation in a rectangular coordinate system. J Chem Phys 139(8):084119

    Article  PubMed  Google Scholar 

  21. Chandler D, Andersen HC (1972) Optimized cluster expansions for classical fluids. 2. Theory of molecular liquids. J Chem Phys 57(5):1930–1937

    Article  CAS  Google Scholar 

  22. Andersen H, Chandler D, Weeks J (1972) Optimized cluster expansions for classical fluids. 3. Applications to ionic solutions and simple liquids. J Chem Phys 57(7):2626–2631

    Article  CAS  Google Scholar 

  23. Andersen H, Chandler D (1972) Optimized cluster expansions for classical fluids. 1. General theory and variational formulation of mean spherical model and hard-sphere Percus-Yevick equations. J Chem Phys 57(5):1918–1929

    Article  CAS  Google Scholar 

  24. Ikeguchi M, Doi J (1995) Direct numerical-solution of the Ornstein-Zernike integral-equation and spatial-distribution of water around hydrophobic molecules. J Chem Phys 103(12):5011–5017

    Article  CAS  Google Scholar 

  25. Kovalenko A, Hirata F (2001) First-principles realization of a van der Waals-Maxwell theory for water. Chem Phys Lett 349(5–6):496–502

    Article  CAS  Google Scholar 

  26. Yoshida N, Imai T, Phongphanphanee S, Kovalenko A, Hirata F (2009) Molecular recognition in biomolecules studied by statistical-mechanical integral-equation theory of liquids. J Phys Chem B 113(4):873–886

    Article  CAS  PubMed  Google Scholar 

  27. Yoshida N, Kiyota Y, Phongphanphanee S, Maruyama Y, Imai T, Hirata F (2011) Statistical mechanics theory of molecular recognition and pharmaceutical design. Int Rev Phys Chem 30(4):445–478

    Article  CAS  Google Scholar 

  28. Yoshida N, Kiyota Y, Rungrotmongkol T, Phongphanphanee S, Imai T, Hirata F (2011) Statistical mechanical integral equation approach to reveal the solvation effect on hydrolysis free energy of ATP and its analogue. In: Suzuki M (ed) The role of water in ATP hydrolysis Energy transduction by protein machinery. Springer Science, New York, pp 63–87

    Google Scholar 

  29. Phongphanphanee S, Yoshida N, Hirata F (2011) Molecular recognition explored by a statistical-mechanics theory of liquids. Curr Pharm Des 17(17):1740–1757

    Article  CAS  PubMed  Google Scholar 

  30. Yoshida N (2017) Role of solvation in drug design as revealed by the statistical mechanics integral equation theory of liquids. J Chem Info Model 57(11):2646–2656

    Article  CAS  Google Scholar 

  31. Imai T, Yoshida N, Kovalenko A, Hirata F (2008) A statistical mechanics theory of molecular recognition. In: Kuwajima K, Goto Y, Hirata F, Terazima M, Kataoka M (eds) Water and biomolecules - physical chemistry of life phenomena. Springer, Berlin, Heidelberg

    Google Scholar 

  32. Imai T, Hiraoka R, Kovalenko A, Hirata F (2005) Water molecules in a protein cavity detected by a statistical-mechanical theory. J Am Chem Soc 127(44):15334–15335

    Article  CAS  PubMed  Google Scholar 

  33. Yoshida N, Phongphanphanee S, Maruyama Y, Imai T, Hirata F (2006) Selective ion-binding by protein probed with the 3D-RISM theory. J Am Chem Soc 128(37):12042–12043

    Article  CAS  PubMed  Google Scholar 

  34. Yoshida N, Phongphanphanee S, Hirata F (2006) Selective ion binding by human lysozyme studied by the statistical mechanical integral equation theory. Lecture Series on Computer and Computational Sciences 6:1–3

    Google Scholar 

  35. Yoshida N, Phongphanphanee S, Hirata F (2007) Selective ion binding by protein probed with the statistical mechanical integral equation theory. J Phys Chem B 111(17):4588–4595

    Article  CAS  PubMed  Google Scholar 

  36. Kuroki R, Yutani K (1998) Structural and thermodynamic responses of mutations at a Ca2+ binding site engineered into human lysozyme. J Biol Chem 273(51):34310–34315

    Article  CAS  PubMed  Google Scholar 

  37. Phongphanphanee S, Yoshida N, Hirata F (2007) The statistical-mechanics study for the distribution of water molecules in aquaporin. Chem Phys Lett 449(1–3):196–201

    Article  CAS  Google Scholar 

  38. Phongphanphanee S, Yoshida N, Hirata F (2008) On the proton exclusion of aquaporins: a statistical mechanics study. J Am Chem Soc 130(5):1540–1541

    Article  CAS  PubMed  Google Scholar 

  39. Phongphanphanee S, Yoshida N, Hirata F (2009) The potential of mean force of water and ions in aquaporin channels investigated by the 3d-Rism method. J Mol Liq 147(1–2):107–111

    Article  CAS  Google Scholar 

  40. Phongphanphanee S, Yoshida N, Hirata F (2010) Molecular selectivity in aquaporin channels studied by the 3D-RISM theory. J Phys Chem B 114(23):7967–7973

    Article  CAS  PubMed  Google Scholar 

  41. Ikuta Y, Maruyama Y, Matsugami M, Hirata F (2007) Probing cations recognized by a crown ether with the 3D-RISM theory. Chem Phys Lett 433(4–6):403–408

    Article  CAS  Google Scholar 

  42. Phongphanphanee S, Rungrotmongkol T, Yoshida N, Hannongbua S, Hirata F (2010) Proton transport through the influenza a M2 channel: three-dimensional reference interaction site model study. J Am Chem Soc 132:9782–9788

    Article  CAS  PubMed  Google Scholar 

  43. Imai T, Oda K, Kovalenko A, Hirata F, Kidera A (2009) Ligand mapping on protein surfaces by the 3D-RISM theory: toward computational fragment-based drug design. J Am Chem Soc 131(34):12430–12440

    Article  CAS  PubMed  Google Scholar 

  44. Kiyota Y, Yoshida N, Hirata F (2011) A new approach for investigating the molecular recognition of protein: toward structure-based drug design based on the 3D-RISM theory. J Chem Theory Comput 7(11):3803–3815

    Article  CAS  PubMed  Google Scholar 

  45. Phongphanphanee S, Yoshida N, Oiki S, Hirata F (2014) Probing “ambivalent” snug-fit sites in the KcsA potassium channel using three-dimensional reference interaction site model (3D-RISM) theory. Pure Appl Chem 86(2):97–104

    Article  CAS  Google Scholar 

  46. Phongphanphanee S, Yoshida N, Oiki S, Hirata F (2014) Distinct configurations of cations and water in the selectivity filter of the KcsA potassium channel probed by 3D-RISM theory. J Mol Liq 200:52–58

    Article  CAS  Google Scholar 

  47. Tayefeh S, Kloss T, Thiel G, Hertel B, Moroni A, Kast SM (2007) Molecular dynamics simulation of the cytosolic mouth in Kcv-type potassium channels. Biochemistry 46(16):4826–4839

    Article  CAS  PubMed  Google Scholar 

  48. Kiyota Y, Hiraoka R, Yoshida N, Maruyama Y, Imai T, Hirata F (2009) Theoretical study of CO escaping pathway in myoglobin with the 3D-RISM theory. J Am Chem Soc 131(11):3852–3853

    Article  CAS  PubMed  Google Scholar 

  49. Kiyota Y, Yoshida N, Hirata F (2011) Affinity of small ligands to myoglobin studied by the 3d-Rism theory. J Mol Liq 159(1):93–98

    Article  CAS  Google Scholar 

  50. Ruankaew N, Yoshida N, Watanabe Y, Nakano H, Phongphanphanee S (2017) Size-dependent adsorption sites in a Prussian blue nanoparticle: a 3D-RISM study. Chem Phys Lett 684:117–125

    Article  CAS  Google Scholar 

  51. Ruankaew N, Yoshida N, Watanabe Y, Nakayama A, Nakano H, Phongphanphanee S (2019) Distinct ionic adsorption sites in defective Prussian blue: a 3D-RISM study. Phys Chem Chem Phys 21(40):22569–22576

    Article  CAS  PubMed  Google Scholar 

  52. Maruyama Y, Yoshida N, Tadano H, Takahashi D, Sato M, Hirata F (2014) Massively parallel implementation of 3D-RISM calculation with volumetric 3D-FFT. J Comput Chem 35(18):1347–1355

    Article  CAS  PubMed  Google Scholar 

  53. Yoshida N, Higashi M, Motoki H, Hirota S (2018) Theoretical analysis of the domain-swapped dimerization of cytochrome c: an MD and 3D-RISM approach. J Chem Phys 148(2):025102

    Article  PubMed  Google Scholar 

  54. Ten-No S, Hirata F, Kato S (1993) A hybrid approach for the solvent effect on the electronic-structure of a solute based on the RISM and Hartree-Fock equations. Chem Phys Lett 214(3–4):391–396

    Article  CAS  Google Scholar 

  55. Ten-No S, Hirata F, Kato S (1994) Reference interaction site model self-consistent-field study for solvation effect on carbonyl-compounds in aqueous-solution. J Chem Phys 100(10):7443–7453

    Article  CAS  Google Scholar 

  56. Sato H, Hirata F, Kato S (1996) Analytical energy gradient for the reference interaction site model multiconfigurational self-consistent-field method: application to 1,2-difluoroethylene in aqueous solution. J Chem Phys 105(4):1546–1551

    Article  CAS  Google Scholar 

  57. Sato H, Kovalenko A, Hirata F (2000) Self-consistent field, ab initio molecular orbital and three-dimensional reference interaction site model study for solvation effect on carbon monoxide in aqueous solution. J Chem Phys 112(21):9463–9468

    Article  CAS  Google Scholar 

  58. Yoshida N, Hirata F (2006) A new method to determine electrostatic potential around a macromolecule in solution from molecular wave functions. J Comput Chem 27(4):453–462

    Article  CAS  PubMed  Google Scholar 

  59. Yoshida N, Nishiyama K (2016) Molecular aspects of solvation investigated using statistical mechanics. In: Leszczynski J, Kaczmarek-Kedziera A, Puzyn T, Papadopoulos MG, Reis H, Shukla MK (eds) Handbook of computational chemistry, 2nd edn. Springer, Cham

    Google Scholar 

  60. Yoshida N, Kato S (2000) Molecular Ornstein-Zernike approach to the solvent effects on solute electronic structures in solution. J Chem Phys 113(12):4974–4984

    Article  CAS  Google Scholar 

  61. Kido K, Kasahara K, Yokogawa D, Sato H (2015) A hybrid framework of first principles molecular orbital calculations and a three-dimensional integral equation theory for molecular liquids: multi-center molecular Ornstein-Zernike self-consistent field approach. J Chem Phys 143(1):014103

    Article  PubMed  Google Scholar 

  62. Yoshida N (2007) Analytical free energy gradient for the molecular Ornstein-Zernike self-consistent-field method. Condens Matter Phys 10(3):363–372

    Article  Google Scholar 

  63. Moss T, Heil J, Kast SM (2008) Quantum chemistry in solution by combining 3D integral equation theory with a cluster embedding approach. J Phys Chem B 112(14):4337–4343

    Article  Google Scholar 

  64. Du Q, Beglov D, Wei D, Roux B (2007) Solvation and polarization of the N-methyl amine molecule in aqueous solution: a combined study of quantum mechanics and integral equation theory in three dimensions (vol 107, pg 13463, 2003). J Phys Chem B 111(48):13658–13658

    Article  CAS  Google Scholar 

  65. Kuraoku D, Yonamine T, Koja G, Yoshida N, Arimitsu S, Higashi M (2019) Effects of water addition on a catalytic fluorination of dienamine. Molecules 24(19)

    Google Scholar 

  66. Seno Y, Yoshida N, Nakano H (2016) Theoretical analysis of complex formation of p-carboxybenzeneboronic acid with a monosaccharide. J Mol Liq 217:93–98

    Article  CAS  Google Scholar 

  67. Yoshida N, Tanaka H, Hirata F (2013) Theoretical study of salt effects on the Diels-Alder reaction of cyclopentadiene with methyl vinyl ketone using RISM-SCF theory. J Phys Chem B 117(45):14115–14121

    Article  CAS  PubMed  Google Scholar 

  68. Hayaki S, Kido K, Sato H, Sakaki S (2010) Ab initio study on S(N)2 reaction of methyl p-nitrobenzenesulfonate and chloride anion in [mmim][PF6]. Phys Chem Chem Phys 12(8):1822–1826

    Article  CAS  PubMed  Google Scholar 

  69. Hayaki S, Kido K, Yokogawa D, Sato H, Sakaki S (2009) A theoretical analysis of a Diels-Alder reaction in ionic liquids. J Phys Chem B 113(24):8227–8230

    Article  CAS  PubMed  Google Scholar 

  70. Chiappe C, Malvaldi M, Pomelli CS (2010) Ab initio study of the Diels-Alder reaction of cyclopentadiene with acrolein in a ionic liquid by KS-DFT/3D-RISM-KH theory. J Chem Theory Comput 6(1):179–183

    Article  CAS  PubMed  Google Scholar 

  71. Malvaldi M, Bruzzone S, Chiappe C, Gusarov S, Kovalenko A (2009) Ab initio study of ionic liquids by KS-DFT/3D-RISM-KH theory. J Phys Chem B 113(11):3536–3542

    Article  CAS  PubMed  Google Scholar 

  72. Hong J, Yoshida N, Chong S-H, Lee C, Ham S, Hirata F (2012) Elucidating the molecular origin of hydrolysis energy of pyrophosphate in water. J Chem Theory Comput 8:2239–2246

    Article  CAS  PubMed  Google Scholar 

  73. Harano Y, Sato H, Hirata F (2000) Solvent effects on a Diels-Alder reaction in supercritical water: RISM-SCF study. J Am Chem Soc 122(10):2289–2293

    Article  CAS  Google Scholar 

  74. Yang C, Watanabe Y, Yoshida N, Nakano H (2019) Three-dimensional reference interaction site model self-consistent field study on the coordination structure and excitation spectra of Cu(II)-water complexes in aqueous solution. J Phys Chem A 123(15):3344–3354

    Article  CAS  PubMed  Google Scholar 

  75. Fujishige S, Kawashima Y, Yoshida N, Nakano H (2013) Three-dimensional reference interaction site model self-consistent field study of the electronic structure of [Cr(H2O)6](3+) in aqueous solution. J Phys Chem A 117(34):8314–8322

    Article  CAS  PubMed  Google Scholar 

  76. Yokogawa D, Ono K, Sato H, Sakaki S (2011) Theoretical study on aquation reaction of cis-platin complex: RISM-SCF-SEDD, a hybrid approach of accurate quantum chemical method and statistical mechanics. Dalton Trans 40(42):11125–11130

    Article  CAS  PubMed  Google Scholar 

  77. Sato H, Kikumori C, Sakaki S (2011) Solvation structure of coronene-transition metal complex: a RISM-SCF study. Phys Chem Chem Phys 13(1):309–313

    Article  CAS  PubMed  Google Scholar 

  78. Sato H, Hirata F (2002) Equilibrium and nonequilibrium solvation structure of hexaammineruthenium (II, III) in aqueous solution: Ab initio RISM-SCF study. J Phys Chem A 106(10):2300–2304

    Article  CAS  Google Scholar 

  79. Fujiki R, Kasai Y, Seno Y, Matsui T, Shigeta Y, Yoshida N, Nakano H (2018) A computational scheme of pKa values based on the three-dimensional reference interaction site model self-consistent field theory coupled with the linear fitting correction scheme. Phys Chem Chem Phys 20(43):27272–27279

    Article  CAS  PubMed  Google Scholar 

  80. Kido K, Sato H, Sakaki S (2012) Systematic assessment on aqueous pK(a) and pK(b) of an amino Acid Base on RISM-SCF-SEDD method: toward first principles calculations. Int J Quantum Chem 112(1):103–112

    Article  CAS  Google Scholar 

  81. Yoshida N, Ishizuka R, Sato H, Hirata F (2006) Ab initio theoretical study of temperature and density dependence of molecular and thermodynamic properties of water in the entire fluid region: autoionization processes. J Phys Chem B 110(16):8451–8458

    Article  CAS  PubMed  Google Scholar 

  82. Sato H, Hirata F (1998) Theoretical study for autoionization of liquid water: temperature dependence of the ionic product (pKw). J Phys Chem A 102(15):2603–2608

    Article  CAS  Google Scholar 

  83. Sato H, Hirata F, Sakaki S (2004) Distortion of electronic structure in solvated molecules: tautomeric equilibrium of 2-pyridone and 2-hydroxypridine in water studied by the RISM-SCF method. J Phys Chem A 108(11):2097–2102

    Article  CAS  Google Scholar 

  84. Tielker N, Eberlein L, Gussregen S, Kast SM (2018) The SAMPL6 challenge on predicting aqueous pK(a) values from EC-RISM theory. J Comput Aided Mol Des 32(10):1151–1163

    Article  CAS  PubMed  Google Scholar 

  85. Tielker N, Eberlein L, Chodun C, Gussregen S, Kast SM (2019) pK(a) calculations for tautomerizable and conformationally flexible molecules: partition function vs. state transition approach. J Mol Model 25(5):139

    Article  PubMed  Google Scholar 

  86. Tanaka Y, Kawashima Y, Yoshida N, Nakano H (2017) Solvatochromism and preferential solvation of Brooker’s merocyanine in water-methanol mixtures. J Comput Chem 38(28):2411–2419

    Article  CAS  PubMed  Google Scholar 

  87. Katsura Nishiyama YW, Yoshida N, Hirata F (2012) Solvent effects on electronic structures of Coumarin 153: parallel studies by means of spectroscopy and RISM-SCF calculations. J Phys Soc Jpn 81:SA016

    Article  Google Scholar 

  88. Nishiyama K, Watanabe Y, Yoshida N, Hirata F (2013) Solvent dependence of Stokes shift for organic solute-solvent systems: a comparative study by spectroscopy and reference interaction-site model-self-consistent-field theory. J Chem Phys 139(9):094503

    Article  PubMed  Google Scholar 

  89. Tanaka Y, Yoshida N, Nakano H (2013) Solvent effect on excited states of merocyanines: a theoretical study using the RISM-SCF method. Chem Phys Lett 583:69–73

    Article  CAS  Google Scholar 

  90. Hirano K, Yokogawa D, Sato H, Sakaki S (2010) An analysis of 3D solvation structure in biomolecules: application to coiled coil serine and bacteriorhodopsin. J Phys Chem B 114(23):7935–7941

    Article  CAS  PubMed  Google Scholar 

  91. Yokogawa D, Sato H, Sakaki S, Kimura Y (2010) Aqueous solvation of p-aminobenzonitrile in the excited states: a molecular level theory on density dependence. J Phys Chem B 114(2):910–914

    Article  CAS  PubMed  Google Scholar 

  92. Osawa K, Hamamoto T, Fujisawa T, Terazima M, Sato H, Kimura Y (2009) Raman spectroscopic study on the solvation of p-aminobenzonitrile in supercritical water and methanol. J Phys Chem A 113(13):3143–3154

    Article  CAS  PubMed  Google Scholar 

  93. Iida K, Yokogawa D, Sato H, Sakaki S (2009) A systematic understanding of orbital energy shift in polar solvent. J Chem Phys 130(4):044107

    Article  PubMed  Google Scholar 

  94. Kasai Y, Yoshida N, Nakano H (2014) Theoretical analysis of salt effect on intramolecular proton transfer reaction of glycine in aqueous NaCl solution. J Mol Liq 200:32–37

    Article  CAS  Google Scholar 

  95. Kasai Y, Yoshida N, Nakano H (2015) Theoretical analysis of co-solvent effect on the proton transfer reaction of glycine in a water-acetonitrile mixture. J Chem Phys 142(20):204103

    Article  PubMed  Google Scholar 

  96. Yoshida N, Ishida T, Hirata F (2008) Theoretical study of temperature and solvent dependence of the free-energy surface of the intramolecular electron-transfer based on the RISM-SCF theory: application to the 1,3-dinitrobenzene radical anion in acetonitrile and methanol. J Phys Chem B 112(2):433–440

    Article  CAS  PubMed  Google Scholar 

  97. Lee JY, Yoshida N, Hirata F (2006) Conformational equilibrium of 1,2-dichloroethane in water: comparison of PCM and RISM-SCF methods. J Phys Chem B 110(32):16018–16025

    Article  CAS  PubMed  Google Scholar 

  98. Vchirawongkwin V, Sato H, Sakaki S (2010) RISM-SCF-SEDD study on the symmetry breaking of carbonate and nitrate anions in aqueous solution. J Phys Chem B 114(32):10513–10519

    Article  CAS  PubMed  Google Scholar 

  99. Casanova D, Gusarov S, Kovalenko A, Ziegler T (2007) Evaluation of the SCF combination of KS-DFT and 3D-RISM-KH; solvation effect on conformational equilibria, tautomerization energies, and activation barriers. J Chem Theory Comput 3(2):458–476

    Article  CAS  PubMed  Google Scholar 

  100. Shapovalov V, Truong TN, Kovalenko A, Hirata F (2000) Liquid structure at metal oxide-water interface: accuracy of a three-dimensional RISM methodology. Chem Phys Lett 320(1–2):186–193

    Article  CAS  Google Scholar 

  101. Nishihara S, Otani M (2017) Hybrid solvation models for bulk, interface, and membrane: reference interaction site methods coupled with density functional theory. Phys Rev B 96(11):115429

    Article  Google Scholar 

  102. Okamoto D, Watanabe Y, Yoshida N, Nakano H (2019) Implementation of state-averaged MCSCF method to RISM- and 3D-RISM-SCF schemes. Chem Phys Lett 730:179–185

    Article  CAS  Google Scholar 

  103. Shimizu RY, Yanai T, Yokogawa D (2020) Improved RISM-CASSCF optimization via state-average treatment and damping for characterizing excited molecules in solution with multireference perturbation theory. J Chem Theory Comput 16(8):4865–4873

    Article  CAS  PubMed  Google Scholar 

  104. Shimizu RY, Yanai T, Kurashige Y, Yokogawa D (2018) Electronically excited solute described by RISM approach coupled with multireference perturbation theory: vertical excitation energies of bioimaging probes. J Chem Theory Comput 14(11):5673–5679

    Article  CAS  PubMed  Google Scholar 

  105. Aono S, Sakaki S (2012) Evaluation procedure of electrostatic potential in 3D-RISM-SCF method and its application to hydrolyses of Cis- and transplatin complexes. J Phys Chem B 116(43):13045–13062

    Article  CAS  PubMed  Google Scholar 

  106. Reimann M, Kaupp M (2020) Evaluation of an efficient 3D-RISM-SCF implementation as a tool for computational spectroscopy in solution. J Phys Chem A 124(37):7439–7452

    Article  CAS  PubMed  Google Scholar 

  107. Yamazaki T, Sato H, Hirata F (2000) NMR chemical shifts in solution: a RISM-SCF approach. Chem Phys Lett 325(5–6):668–674

    Article  CAS  Google Scholar 

  108. Imamura K, Yamazaki T, Yokogawa D, Higashi M, Sato H (2020) Nuclear magnetic shielding of molecule in solution based on reference interaction site model self-consistent field with spatial electron density distribution. J Chem Phys 152(19)

    Google Scholar 

  109. Gusarov S, Ziegler T, Kovalenko A (2006) Self-consistent combination of the three-dimensional RISM theory of molecular solvation with analytical gradients and the Amsterdam density functional package. J Phys Chem A 110(18):6083–6090

    Article  CAS  PubMed  Google Scholar 

  110. Yokogawa D, Sato H, Sakaki S (2009) Analytical energy gradient for reference interaction site model self-consistent field explicitly including spatial electron density distribution. J Chem Phys 131(21):214504

    Article  PubMed  Google Scholar 

  111. Yokogawa D, Sato H, Sakaki S (2007) New generation of the reference interaction site model self-consistent field method: introduction of spatial electron density distribution to the solvation theory. J Chem Phys 126(24):244504

    Article  PubMed  Google Scholar 

  112. Yokogawa D (2018) New generation of the reference interaction site model self-consistent field method: introduction of constrained spatial electron density distribution (cSED). Bull Chem Soc Jpn 91(10):1540–1545

    Article  CAS  Google Scholar 

  113. Yoshida N (2014) Efficient implementation of the three-dimensional reference interaction site model method in the fragment molecular orbital method. J Chem Phys 140(21):214118

    Article  PubMed  Google Scholar 

  114. Yoshida N, Kiyota Y, Hirata F (2011) The electronic-structure theory of a large-molecular system in solution: application to the intercalation of proflavine with solvated DNA. J Mol Liq 159(1):83–92

    Article  CAS  Google Scholar 

  115. Gao JL (1996) Hybrid quantum and molecular mechanical simulations: an alternative avenue to solvent effects in organic chemistry. Acc Chem Res 29(6):298–305

    Article  CAS  Google Scholar 

  116. Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 313(3–4):701–706

    Article  CAS  Google Scholar 

  117. Fedorov D, Kitaura K (2004) The importance of three-body terms in the fragment molecular orbital method. J Chem Phys 120(15):6832–6840

    Article  CAS  PubMed  Google Scholar 

  118. Takami T, Maki J, Ji O, Inadomi Y, Honda H, Susukita R, Inoue K, Kobayashi T, Nogita R, Aoyagi M (2007) Multi-physics extension of OpenFMO framework. AIP Conf Proc 963(2):122–125

    Article  Google Scholar 

  119. Kinoshita M, Okamoto Y, Hirata F (1999) Analysis on conformational stability of C-peptide of ribonuclease A in water using the reference interaction site model theory and Monte Carlo simulated annealing. J Chem Phys 110(8):4090–4100

    Article  CAS  Google Scholar 

  120. Kinoshita M, Okamoto Y, Hirata F (1998) First-principle determination of peptide conformations in solvents: combination of Monte Carlo simulated annealing and RISM theory. J Am Chem Soc 120(8):1855–1863

    Article  CAS  Google Scholar 

  121. Miyata T, Ikuta Y, Hirata F (2011) Free energy calculation using molecular dynamics simulation combined with the three-dimensional reference interaction site model theory. II. Thermodynamic integration along a spatial reaction coordinate. J Chem Phys 134(4):044127

    Article  PubMed  Google Scholar 

  122. Miyata T, Ikuta Y, Hirata F (2010) Free energy calculation using molecular dynamics simulation combined with the three dimensional reference interaction site model theory. I. Free energy perturbation and thermodynamic integration along a coupling parameter. J Chem Phys 133(4):044114

    Article  PubMed  Google Scholar 

  123. Miyata T, Hirata F (2008) Combination of molecular dynamics method and 3D-RISM theory for conformational sampling of large flexible molecules in solution. J Comput Chem 29(6):871–882

    Article  CAS  PubMed  Google Scholar 

  124. Omelyan I, Kovalenko A (2015) MTS-MD of biomolecules steered with 3D-RISM-KH mean solvation forces accelerated with generalized solvation force extrapolation. J Chem Theory Comput 11(4):1875–1895

    Article  CAS  PubMed  Google Scholar 

  125. Luchko T, Gusarov S, Roe DR, Simmerling C, Case DA, Tuszynski J, Kovalenko A (2010) Three-dimensional molecular theory of solvation coupled with molecular dynamics in Amber. J Chem Theory Comput 6(3):607–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chong S, Ham S (2012) Impact of chemical heterogeneity on protein self-assembly in water. Proc Natl Acad Sci U S A 109:7636–7641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chong SH, Ham S (2015) Dissecting protein configurational entropy into conformational and vibrational contributions. J Phys Chem B 119(39):12623–12631

    Article  CAS  PubMed  Google Scholar 

  128. Tanimoto S, Higashi M, Yoshida N, Nakano H (2016) The ion dependence of carbohydrate binding of CBM36: an MD and 3D-RISM study. J Phys Condens Mat 28(34):344005

    Article  Google Scholar 

  129. Phanich J, Rungrotmongkol T, Sindhikara D, Phongphanphanee S, Yoshida N, Hirata F, Kungwan N, Hannongbua S (2016) A 3D-RISM/RISM study of the oseltamivir binding efficiency with the wild-type and resistance-associated mutant forms of the viral influenza B neuraminidase. Protein Sci 25(1):147–158

    Article  CAS  PubMed  Google Scholar 

  130. Maruyama Y, Mitsutake A (2017) Stability of unfolded and folded protein structures using a 3D-RISM with the RMDFT. J Phys Chem B 121(42):9881–9885

    Article  CAS  PubMed  Google Scholar 

  131. Maruyama Y, Mitsutake A (2018) Analysis of structural stability of Chignolin. J Phys Chem B 122(14):3801–3814

    Article  CAS  PubMed  Google Scholar 

  132. Sumi T, Maruyama Y, Mitsutake A, Mochizuki K, Koga K (2018) Application of reference-modified density functional theory: temperature and pressure dependences of solvation free energy. J Comput Chem 39(4):202–217

    Article  CAS  PubMed  Google Scholar 

  133. Maruyama Y, Takano H, Mitsutake A (2019) Analysis of molecular dynamics simulations of 10-residue peptide, chignolin, using statistical mechanics: relaxation mode analysis and three-dimensional reference interaction site model theory. Biophys Physicobiol 16:407–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ikeguchi M, Ueno J, Sato M, Kidera A (2005) Protein structural change upon ligand binding: linear response theory. Phys Rev Lett 94(7):078102

    Article  PubMed  Google Scholar 

  135. Tanimoto S, Tamura K, Hayashi S, Yoshida N, Nakano H (2021) A computational method to simulate global conformational changes of proteins induced by cosolvent. J Comput Chem 42(8):552–563

    Article  CAS  PubMed  Google Scholar 

  136. Kasahara K, Sato H (2016) A theory of diffusion controlled reactions in polyatomic molecule system. J Chem Phys 145(19):194502

    Article  PubMed  Google Scholar 

  137. Yamaguchi T, Yoshida N (2021) Solvation dynamics in electronically polarizable solvents: theoretical treatment using solvent-polarizable three-dimensional reference interaction-site model theory combined with time-dependent density functional theory. J Chem Phys 154(4):044504

    Article  CAS  PubMed  Google Scholar 

  138. Yoshimori A (2011) Time-dependent density functional theory formulated using the interaction-site model. J Phys Soc Jpn 80:034801

    Article  Google Scholar 

  139. Kasahara K, Sato H (2017) Dynamics theory for molecular liquids based on an interaction site model. Phys Chem Chem Phys 19(41):27917–27929

    Article  CAS  PubMed  Google Scholar 

  140. Kasahara K, Sato H (2014) Development of three-dimensional site-site Smoluchowski-Vlasov equation and application to electrolyte solutions. J Chem Phys 140(24):244110

    Article  PubMed  Google Scholar 

  141. Kovalenko A, Hirata F (2000) Hydration free energy of hydrophobic solutes studied by a reference interaction site model with a repulsive bridge correction and a thermodynamic perturbation method. J Chem Phys 113(7):2793–2805

    Article  CAS  Google Scholar 

  142. Ten-No S (2001) Free energy of solvation for the reference interaction site model: critical comparison of expressions. J Chem Phys 115(8):3724–3731

    Article  CAS  Google Scholar 

  143. Sato K, Chuman H, Ten-No S (2005) Comparative study on solvation free energy expressions in reference interaction site model integral equation theory. J Phys Chem B 109(36):17290–17295

    Article  CAS  PubMed  Google Scholar 

  144. Palmer DS, Frolov AI, Ratkova EL, Fedorov MV (2010) Towards a universal method for calculating hydration free energies: a 3D reference interaction site model with partial molar volume correction. J Phys Condens Mat 22(49):492101

    Article  Google Scholar 

  145. Kido K, Yokogawa D, Sato H (2012) A modified repulsive bridge correction to accurate evaluation of solvation free energy in integral equation theory for molecular liquids. J Chem Phys 137(2):024106

    Article  PubMed  Google Scholar 

  146. Sumi T, Mitsutake A, Maruyama Y (2015) A solvation-free-energy functional: a reference-modified density functional formulation. J Comput Chem 36(18):1359–1369

    Article  CAS  PubMed  Google Scholar 

  147. Sumi T, Mitsutake A, Maruyama Y (2015) A solvation-free-energy functional: a reference-modified density functional formulation (vol 36, pg 1359, 2015). J Comput Chem 36(26):2009–2011

    CAS  PubMed  Google Scholar 

  148. Sergiievskyi V, Jeanmairet G, Levesque M, Borgis D (2015) Solvation free-energy pressure corrections in the three dimensional reference interaction site model. J Chem Phys 143(18):184116

    Article  PubMed  Google Scholar 

  149. Miyata T, Ebato Y (2016) Thermodynamic significance to correct the location of first rising region in radial distribution function approximately estimated from Ornstein-Zernike integral equation theory for Lennard-Jones fluids. J Mol Liq 217:75–82

    Article  CAS  Google Scholar 

  150. Ebato Y, Miyata T (2016) A pressure consistent bridge correction of Kovalenko-Hirata closure in Ornstein-Zernike theory for Lennard-Jones fluids by apparently adjusting sigma parameter. AIP Adv 6(5):055111

    Article  Google Scholar 

  151. Tanimoto S, Yoshida N, Yamaguchi T, Ten-No SL, Nakano H (2019) Effect of molecular orientational correlations on solvation free energy computed by reference interaction site model theory. J Chem Info Model 59(9):3770–3781

    Article  CAS  Google Scholar 

  152. Wang Z, Yang H, Wu Z, Wang T, Li W, Tang Y, Liu G (2018) In silico prediction of blood–brain barrier permeability of compounds by machine learning and resampling methods. ChemMedChem 13(20):2189–2201

    Article  CAS  PubMed  Google Scholar 

  153. Sosnin S, Misin M, Palmer DS, Fedorov MV (2018) 3D matters! 3D-RISM and 3D convolutional neural network for accurate bioaccumulation prediction. J Phys Condens Matter 30(32):32LT03

    Article  PubMed  Google Scholar 

  154. Roy D, Hinge VK, Kovalenko A (2019) Predicting blood–brain partitioning of small molecules using a novel minimalistic descriptor-based approach via the 3D-RISM-KH molecular solvation theory. ACS Omega 4(2):3055–3060

    Article  CAS  Google Scholar 

  155. Roy D, Hinge VK, Kovalenko A (2019) To pass or not to pass: predicting the blood–brain barrier permeability with the 3D-RISM-KH molecular solvation theory. ACS Omega 4(16):16774–16780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Subramanian V, Ratkova E, Palmer D, Engkvist O, Fedorov M, Llinas A (2020) Multisolvent models for solvation free energy predictions using 3D-RISM hydration thermodynamic descriptors. J Chem Info Model 60(6):2977–2988

    Article  CAS  Google Scholar 

  157. Hinge VK, Roy D, Kovalenko A (2019) Prediction of P-glycoprotein inhibitors with machine learning classification models and 3D-RISM-KH theory based solvation energy descriptors. J Comput Aided Mol Des 33(11):965–971

    Article  CAS  PubMed  Google Scholar 

  158. Yoshidome T, Ikeguchi M, Ohta M (2020) Comprehensive 3D-RISM analysis of the hydration of small molecule binding sites in ligand-free protein structures. J Comput Chem 41(28):2406–2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Roy D, Dutta D, Wishart DS, Kovalenko A (2021) Predicting PAMPA permeability using the 3D-RISM-KH theory: are we there yet? J Comput Aided Mol Des 35:261–269

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Yoshida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yoshida, N., Sato, H. (2021). Multiscale Solvation Theory for Nano- and Biomolecules. In: Nishiyama, K., Yamaguchi, T., Takamuku, T., Yoshida, N. (eds) Molecular Basics of Liquids and Liquid-Based Materials. Physical Chemistry in Action. Springer, Singapore. https://doi.org/10.1007/978-981-16-5395-7_2

Download citation

Publish with us

Policies and ethics