Skip to main content

A Statistical Mechanics Study of the Adsorption Sites of Alkali Ions in Prussian Blue

  • Chapter
  • First Online:
Molecular Basics of Liquids and Liquid-Based Materials

Part of the book series: Physical Chemistry in Action ((PCIA))

  • 467 Accesses

Abstract

Since the Fukushima disaster in 2011, studies of selective cesium adsorption materials have attracted great interest, particularly for the removal of radioactive contamination. The discrimination between Cs+ and other alkali ions, e.g., Na+ and K+, is a key solution in the treatment of water to remove radioactive contamination. Among the selective adsorbent materials, Prussian blue (PB) has attracted much attention as a sorbent for Cs+ removal due to its high affinity and cost-effectiveness. However, its mechanism of alkali ion selectivity has not yet been clarified. In the first step toward understanding the mechanism, it is important to clarify the distinct adsorption properties of the various alkali ions. In this chapter, theoretical studies on the size dependence of ions and their adsorption sites in PB based on the statistical mechanical theory of liquids or the three-dimensional reference interaction site model are reviewed. The distinct ionic adsorption sites and the solvation structure of alkali ions in PB are determined using the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McLaughlin PD, Jones B, Maher MM (2012) An update on radioactive release and exposures after the Fukushima Dai-ichi nuclear disaster. Br J Radiol 85:1222–1225. https://doi.org/10.1259/bjr/27017231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Thornton R et al (2004) Chemical, biological, radiological and nuclear terrorism: an introduction for occupational physicians. Occup Med (Lond) 54:101–109. https://doi.org/10.1093/occmed/kqh025

    Article  CAS  Google Scholar 

  3. Ya-anant N, Tiyapun K, Saiyut K (2011) Radiological accident and incident in Thailand: lesson to be learned. Radiat Prot Dosim 146:111–114. https://doi.org/10.1093/rpd/ncr130

    Article  CAS  Google Scholar 

  4. Lee I et al (2018) Porous 3D Prussian blue/cellulose aerogel as a decorporation agent for removal of ingested cesium from the gastrointestinal tract. Sci Rep 8:4540. https://doi.org/10.1038/s41598-018-22715-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang J, Zhuang S (2019) Removal of cesium ions from aqueous solutions using various separation technologies. Rev Environ Sci Biotechnol 18:231–269. https://doi.org/10.1007/s11157-019-09499-9

    Article  CAS  Google Scholar 

  6. Yannick Guari JL (2019) Prussian blue-type nanoparticles and nanocomposites: synthesis, devices, and applications. Pan Stanford Publishing, NewYork

    Book  Google Scholar 

  7. Nigrovic V (1965) Retention of radiocaesium by the rat as influenced by Prussian blue and other compounds. Phys Med Biol 10:81–92. https://doi.org/10.1088/0031-9155/10/1/308

    Article  CAS  PubMed  Google Scholar 

  8. Marina A-M, Jaime K-J, Juan Manuel M, Rios C, Francisco L-N (2012) Prussian blue as an antidote against radioactives Thallium and Cesium poisoning. J Orphan Drugs Res Rev 2:13–21. https://doi.org/10.2147/ODRR.S31881

    Article  CAS  Google Scholar 

  9. Qin Z, Li Y, Gu N (2018) Progress in applications of Prussian blue nanoparticles in biomedicine. Adv Healthc Mater 7:e1800347. https://doi.org/10.1002/adhm.201800347

    Article  CAS  PubMed  Google Scholar 

  10. Parajuli D et al (2016) Application of Prussian blue nanoparticles for the radioactive Cs decontamination in Fukushima region. J Environ Radioact 151(Pt 1):233–237. https://doi.org/10.1016/j.jenvrad.2015.10.014

    Article  CAS  PubMed  Google Scholar 

  11. Hoffman HA, Chakrabarti L, Dumont MF, Sandler AD, Fernandes R (2014) Prussian blue nanoparticles for laser-induced photothermal therapy of tumors. RSC Adv 4:29729–29734. https://doi.org/10.1039/C4RA05209A

    Article  CAS  Google Scholar 

  12. Faustino PJ et al (2008) Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue. J Pharm Biomed Anal 47:114–125. https://doi.org/10.1016/j.jpba.2007.11.049

    Article  CAS  PubMed  Google Scholar 

  13. Hurlbutt K, Wheeler S, Capone I, Pasta M (2018) Prussian blue analogs as battery materials. Joule 2:1950–1960. https://doi.org/10.1016/j.joule.2018.07.017

    Article  CAS  Google Scholar 

  14. Oh D et al (2019) Enhanced immobilization of Prussian blue through hydrogel formation by polymerization of acrylic acid for radioactive cesium adsorption. Sci Rep 9:16334. https://doi.org/10.1038/s41598-019-52600-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Keggin JF, Miles FD (1936) Structures and Formulæ of the Prussian blues and related compounds. Nature 137:577–578. https://doi.org/10.1038/137577a0

    Article  CAS  Google Scholar 

  16. Shores MP, Beauvais LG, Long JR (1999) Cluster-expanded Prussian blue analogues. J Am Chem Soc 121:775–779. https://doi.org/10.1021/ja983530s

    Article  CAS  Google Scholar 

  17. Buser HJ, Schwarzenbach D, Petter W, Ludi A (1977) The crystal structure of Prussian blue: Fe4[Fe(CN)6]3.xH2O. Inorg Chem 16:2704–2710. https://doi.org/10.1021/ic50177a008

    Article  CAS  Google Scholar 

  18. Ruankaew N et al (2019) Distinct ionic adsorption sites in defective Prussian blue: a 3D-RISM study. Phys Chem Chem Phys 21:22569–22576. https://doi.org/10.1039/C9CP04355A

    Article  CAS  PubMed  Google Scholar 

  19. Ruankaew N, Yoshida N, Watanabe Y, Nakano H, Phongphanphanee S (2017) Size-dependent adsorption sites in a Prussian blue nanoparticle: a 3D-RISM study. Chem Phys Lett 684:117–125. https://doi.org/10.1016/j.cplett.2017.06.053

    Article  CAS  Google Scholar 

  20. Samain L et al (2013) Relationship between the synthesis of Prussian blue pigments, their color, physical properties, and their behavior in paint layers. J Phys Chem C 117:9693–9712. https://doi.org/10.1021/jp3111327

    Article  CAS  Google Scholar 

  21. Sharma VK et al (2014) Dynamics of water in Prussian blue analogues: neutron scattering study. J Appl Phys 116:034909. https://doi.org/10.1063/1.4890722

    Article  CAS  Google Scholar 

  22. Bueno PR et al (2008) Synchrotron structural characterization of electrochemically synthesized hexacyanoferrates containing K+: a revisited analysis of electrochemical redox. J Phys Chem C 112:13264–13271. https://doi.org/10.1021/jp802070f

    Article  CAS  Google Scholar 

  23. Schneemeyer LF, Spengler SE, Murphy DW (1985) Ion selectivity in nickel hexacyanoferrate films on electrode surfaces. Inorg Chem 24:3044–3046. https://doi.org/10.1021/ic00213a034

    Article  CAS  Google Scholar 

  24. Fujita H, Sasano H, Miyajima R, Sakoda A (2014) Adsorption equilibrium and kinetics of cesium onto insoluble Prussian blue synthesized by an immediate precipitation reaction between Fe3+ and [Fe(CN)6]4−. Adsorption 20:905–915. https://doi.org/10.1007/s10450-014-9635-7

    Article  CAS  Google Scholar 

  25. Moritomo Y, Tanaka H (2013) Alkali cation potential and functionality in the nanoporous Prussian blue analogues. Adv Condens Matter Phys 2013:539620. https://doi.org/10.1155/2013/539620

    Article  CAS  Google Scholar 

  26. Karyakin A, Prussian A (2001) Blue and its analogues: electrochemistry and analytical applications. Electroanalysis 13:813–819. https://doi.org/10.1002/1521-4109(200106)13:10<813::AID-ELAN813>3.0.CO;2-Z

    Article  CAS  Google Scholar 

  27. Jiang Y et al (2018) High-capacity and selective ammonium removal from water using sodium cobalt hexacyanoferrate. RSC Adv 8:34573–34581. https://doi.org/10.1039/C8RA07421F

    Article  CAS  PubMed Central  Google Scholar 

  28. Rassat SD, Sukamto JH, Orth RJ, Lilga MA, Hallen RT (1999) Development of an electrically switched ion exchange process for selective ion separations. Sep Purif Technol 15:207–222. https://doi.org/10.1016/S1383-5866(98)00102-6

    Article  CAS  Google Scholar 

  29. Bácskai J et al (1995) Polynuclear nickel hexacyanoferrates: monitoring of film growth and hydrated counter-cation flux/storage during redox reactions. J Electroanal Chem 385:241–248. https://doi.org/10.1016/0022-0728(94)03788-5

    Article  Google Scholar 

  30. Ishizaki M et al (2013) Proton-exchange mechanism of specific Cs+ adsorption via lattice defect sites of Prussian blue filled with coordination and crystallization water molecules. Dalton Trans 42:16049–16055. https://doi.org/10.1039/C3DT51637G

    Article  CAS  PubMed  Google Scholar 

  31. Ishizaki M et al (2019) Redox-coupled alkali-metal ion transport mechanism in binder-free films of Prussian blue nanoparticles. J Mater Chem A 7:4777–4787. https://doi.org/10.1039/C8TA11776D

    Article  CAS  Google Scholar 

  32. Matsuda T, Kim J, Moritomo Y (2012) Control of the alkali cation alignment in Prussian blue framework. Dalton Trans 41:7620–7623. https://doi.org/10.1039/C2DT12296K

    Article  CAS  PubMed  Google Scholar 

  33. Yu Q, Steen WA, Jeerage KM, Jiang S, Schwartz DT (2002) Structure-dependent solvent and ion intercalation in reduced and oxidized nickel hexacyanoferrates. J Electrochem Soc 149:E195. https://doi.org/10.1149/1.1474434

    Article  CAS  Google Scholar 

  34. Lasky SJ, Buttry DA (1988) Mass measurements using isotopically labeled solvents reveal the extent of solvent transport during redox in thin films on electrodes. J Am Chem Soc 110:6258–6260. https://doi.org/10.1021/ja00226a058

    Article  CAS  PubMed  Google Scholar 

  35. Hirata F (2003) Molecular theory of solvation. Kluwer Academic, New York

    Google Scholar 

  36. Hlushak S, Stoyanov SR, Kovalenko A (2016) A 3D-RISM-KH molecular theory of solvation study of the effective stacking interactions of kaolinite nanoparticles in aqueous electrolyte solution containing additives. J Phys Chem C 120:21344–21357. https://doi.org/10.1021/acs.jpcc.6b03786

    Article  CAS  Google Scholar 

  37. Hlushak S, Kovalenko A (2017) Effective interactions and adsorption of heterocyclic aromatic hydrocarbons in kaolinite organic solutions studied by 3D-RISM-KH molecular theory of solvation. J Phys Chem C 121:22092–22104. https://doi.org/10.1021/acs.jpcc.7b06414

    Article  CAS  Google Scholar 

  38. Lage MR et al (2018) Computational and experimental investigations of the role of water and alcohols in the desorption of heterocyclic aromatic compounds from kaolinite in toluene. J Phys Chem C 122:10377–10391. https://doi.org/10.1021/acs.jpcc.7b12655

    Article  CAS  Google Scholar 

  39. Lage MR, Stoyanov SR, Carneiro JWDM, Dabros T, Kovalenko A (2015) Adsorption of Bitumen model compounds on kaolinite in liquid and supercritical carbon dioxide solvents: a study by periodic density functional theory and molecular theory of solvation. Energy Fuel 29:2853–2863. https://doi.org/10.1021/ef502202q

    Article  CAS  Google Scholar 

  40. Huang W et al (2014) Molecule–surface recognition between heterocyclic aromatic compounds and kaolinite in toluene investigated by molecular theory of solvation and thermodynamic and kinetic experiments. J Phys Chem C 118:23821–23834. https://doi.org/10.1021/jp507393u

    Article  CAS  Google Scholar 

  41. Yamazaki T, Fenniri H (2012) Imaging carbon nanotube interaction with nucleobases in water using the statistical mechanical theory of molecular liquids. J Phys Chem C 116:15087–15092. https://doi.org/10.1021/jp3026804

    Article  CAS  Google Scholar 

  42. Yoshida N, Imai T, Phongphanphanee S, Kovalenko A, Hirata F (2009) Molecular recognition in biomolecules studied by statistical-mechanical integral-equation theory of liquids. J Phys Chem B 113:873–886. https://doi.org/10.1021/jp807068k

    Article  CAS  PubMed  Google Scholar 

  43. Sugita M, Hamano M, Kasahara K, Kikuchi T, Hirata F (2020) New protocol for predicting the ligand-binding site and mode based on the 3D-RISM/KH theory. J Chem Theory Comput 16:2864–2876. https://doi.org/10.1021/acs.jctc.9b01069

    Article  CAS  PubMed  Google Scholar 

  44. Yoshida N (2018) A new method for finding the minimum free energy pathway of ions and small molecule transportation through protein based on 3D-RISM theory and the string method. Chem Phys Lett 699:22–27

    Article  CAS  Google Scholar 

  45. Ruankaew N, Yoshida N, Phongphanphanee S (2019) Solvated lithium ions in defective Prussian blue. IOP Conf Ser Mater Sci Eng 526:012032. https://doi.org/10.1088/1757-899x/526/1/012032

    Article  CAS  Google Scholar 

  46. Jensen KP, Jorgensen WL (2006) Halide, ammonium, and alkali metal ion parameters for modeling aqueous solutions. J Chem Theory Comput 2:1499–1509. https://doi.org/10.1021/ct600252r

    Article  CAS  PubMed  Google Scholar 

  47. Marcus Y (1983) Ionic radii in aqueous solutions. J Solut Chem 12:271–275. https://doi.org/10.1007/BF00646201

    Article  CAS  Google Scholar 

  48. Tironi IG, Sperb R, Smith PE, van Gunsteren WF (1995) A generalized reaction field method for molecular dynamics simulations. J Chem Phys 102:5451–5459. https://doi.org/10.1063/1.469273

    Article  CAS  Google Scholar 

  49. Lee SH, Rasaiah JC (1996) Molecular dynamics simulation of ion mobility. 2. Alkali metal and halide ions using the SPC/E model for water at 25 °C. J Phys Chem 100:1420–1425. https://doi.org/10.1021/jp953050c

    Article  CAS  Google Scholar 

  50. Ohtaki H (2002) Highlights in solute-solvent interactions. Springer, Vienna, pp 1–32

    Book  Google Scholar 

  51. Sangvanich T et al (2010) Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. J Hazard Mater 182:225–231. https://doi.org/10.1016/j.jhazmat.2010.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vincent T, Vincent C, Guibal E (2015) Immobilization of metal hexacyanoferrate ion-exchangers for the synthesis of metal ion sorbents: a mini-review. Molecules 20:20582–20613. https://doi.org/10.3390/molecules201119718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ling C, Chen J, Mizuno F (2013) First-principles study of alkali and alkaline earth ion intercalation in iron hexacyanoferrate: the important role of ionic radius. J Phys Chem C 117:21158–21165. https://doi.org/10.1021/jp4078689

    Article  CAS  Google Scholar 

  54. Moritomo Y, Matsuda T, Kurihara Y, Kim J (2011) Cubic-rhombohedral structural phase transition in Na1.32Mn[Fe(CN)6]0.83·3.6H2O. J Phys Soc Jpn 80:074608. https://doi.org/10.1143/JPSJ.80.074608

    Article  CAS  Google Scholar 

  55. Phongphanphanee S, Yoshida N, Oiki S, Hirata F (2014) Distinct configurations of cations and water in the selectivity filter of the KcsA potassium channel probed by 3D-RISM theory. J Mol Liq 200:52–58. https://doi.org/10.1016/j.molliq.2014.03.050

    Article  CAS  Google Scholar 

  56. Herren F, Fischer P, Ludi A, Haelg W (1980) Neutron diffraction study of Prussian blue, Fe4[Fe(CN)6]3.xH2O. Location of water molecules and long-range magnetic order. Inorg Chem 19:956–959. https://doi.org/10.1021/ic50206a032

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saree Phongphanphanee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruankaew, N., Yoshida, N., Phongphanphanee, S. (2021). A Statistical Mechanics Study of the Adsorption Sites of Alkali Ions in Prussian Blue. In: Nishiyama, K., Yamaguchi, T., Takamuku, T., Yoshida, N. (eds) Molecular Basics of Liquids and Liquid-Based Materials. Physical Chemistry in Action. Springer, Singapore. https://doi.org/10.1007/978-981-16-5395-7_12

Download citation

Publish with us

Policies and ethics