Skip to main content

Overview of Liquids and Liquid-Based Systems

  • Chapter
  • First Online:
Molecular Basics of Liquids and Liquid-Based Materials

Part of the book series: Physical Chemistry in Action ((PCIA))

  • 457 Accesses

Abstract

The topics discussed in this book, “Molecular Basics of Liquids and Liquid-Based Materials” are overviewed in this chapter. First, we introduce liquids and solutions, where a particular attention is paid to their difference from gases and crystalline solids. The solvent effect is of prominence in considering chemical phenomena and reactions in solutions, and basic ideas for microscopic understandings of the solvent effects are described. Various experimental, theoretical, and computational methods to investigate the solvent effects are also introduced. In addition to the structure and the solvent effect in ordinary molecular liquids, those in ionic liquids are reviewed. Finally, the roles of solvents in soft materials, including polymer solutions, proteins, gels, and colloidal solutions are discussed, in which hierarchical modeling and understanding are of particular importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hayashi H, Nishikawa K, Iijima T (1990) Small-angle X-ray scattering study of fluctuations in 1-propanol-water and 2-propanol-water systems. J Phys Chem 94(21):8334–8338

    Article  CAS  Google Scholar 

  2. Nishikawa K, Kodera Y, Iijima T (1987) Fluctuations in the particle number and concentration and the Kirkwood-Buff parameters of tert-butyl alcohol and water mixtures studied by small-angle X-ray scattering. J Phys Chem 91(13):3694–3699

    Article  CAS  Google Scholar 

  3. Nishikawa K, Hayashi H, Iijima T (1989) Temperature dependence of the concentration fluctuation, the Kirkwood-Buff parameters, and the correlation length of tert-butyl alcohol and water mixtures studied by small-angle X-ray scattering. J Phys Chem 93(17):6559–6565

    Article  CAS  Google Scholar 

  4. Kauzmann W (1959) Some factors in the interpretation of protein denaturation. Adv Protein Chem 14:1–63

    CAS  PubMed  Google Scholar 

  5. Gerding P (1968) Thermochemical studies on metal complexes. VI. The formation of some cadmium(II) complex systems at different ionic strengths. Acta Chem Scand 22(4):1283–1296

    Article  CAS  Google Scholar 

  6. Gerding P (1966) Thermochemical studies on metal complexes. I. Free energy, enthalpy, and entropy changes for stepwise formation of cadmium(II) halide complexes in aqueous solution at 25 °C. Acta Chem Scand 20(1):79–94

    Article  CAS  Google Scholar 

  7. Gerding P, Jönsson I (1968) Thermochemical studies on metal complexes. VII. Free energy, enthalpy, and entropy changes for stepwise formation of cadmium(II) chloride and iodide complexes at different ionic strengths. Acta Chem Scand 22(7):2247–2254

    Article  CAS  Google Scholar 

  8. Ahrland S, Björk N-O (1976) Metal halide and pseudohalide complexes in dimethyl sulfoxide solution. III. Equilibrium measurements on the cadmium(II) chloride, bromide, iodide, and thiocyanate systems. Acta Chem Scand A30(4):249–256

    Article  CAS  Google Scholar 

  9. Ahrland S, Björk N-O (1976) Metal halide and pseudohalide complexes in dimethyl sulfoxide solution. IV. Enthalpy measurements on the cadmium(II) chloride, bromide, iodide, and thiocyanate systems. Acta Chem Scand A30(4):257–264

    Article  CAS  Google Scholar 

  10. Kosugi K, Nakabayashi T, Nishi N (1998) Low-frequency Raman spectra of crystalline and liquid acetic acid and its mixtures with water. Chem Phys Lett 291(3–4):253–261

    Article  CAS  Google Scholar 

  11. Nakabayashi T, Kosugi K, Nishi N (1999) Liquid structure of acetic acid studied by Raman spectroscopy and ab initio molecular orbital calculations. J Phys Chem A 103(43):8595–8603

    Article  CAS  Google Scholar 

  12. Cromer DT, Waber JT (1965) Scattering factors computed from relativistic Dirac-Slater wave functions. Acta Crystallogr 18:104–109

    Article  CAS  Google Scholar 

  13. Narten AH, Levy HA (1971) Liquid water: molecular correlation functions from X-ray diffraction. J Chem Phys 55:2263–2269

    Article  CAS  Google Scholar 

  14. Sears VF (2006) Neutron scattering lengths and cross sections. Neutron News 3(3):26–37

    Article  Google Scholar 

  15. Walford G, Clarkej JH, Dore JC (1977) The structure of the heavy water molecule from neutron-diffraction measurements. Mol Phys 33(1):25–30

    Article  CAS  Google Scholar 

  16. Ichikawa K, Kameda Y, Yamaguchi T, Wakita H (1991) Neutron-diffraction investigation of the intramolecular structure of a water molecule in the liquid phase at high temperatures. Mol Phys 73(1):79–86

    Article  CAS  Google Scholar 

  17. Enderby JE, Neilson GW (1981) The structure of electrolyte solutions. Rep Prog Phys 44(6):593–653

    Article  Google Scholar 

  18. Newsome JR, Neilson GW, Enderby JE (1980) Lithium ions in aqueous solution. J Phys C Solid State Phys 13(32):L923–L926

    Article  CAS  Google Scholar 

  19. Hewish NA, Enderby JE, Howells WS (1983) The dynamics of water molecules in ionic solution. J Phys C Solid State Phys 16(10):1777–1791

    Article  CAS  Google Scholar 

  20. Bellissent-Funel M-C, Kahn R, Dianoux AJ, Fontana MP, Maisano G, Migliardo P, Wanderlingh F (1984) Incoherent quasielastic neutron scattering from H2O and aqueous ZnCl2 solutions. Mol Phys 52(6):1479–1486

    Article  CAS  Google Scholar 

  21. Cavagnat D, Lassegues JC (1990) Quasielastic neutron scattering study of acidic solutions. J Phys Condens Matter 2(5):189–193

    Google Scholar 

  22. Lankhorst D, Schriever J, Leyte JC (1982) Determination of the rotational correlation time of water by proton NMR relaxation in H2 17O and some related results. Ber Bunsenges Phys Chem 86(3):215–221

    Article  CAS  Google Scholar 

  23. Van der Maarel JRC, Lankhorst D, De Bleijser J, Leyte JC (1986) Water dynamics in aqueous electrolyte solutions from proton, deuterium and oxygen-17 nuclear magnetic relaxation. J Phys Chem 90(7):1470–1478

    Article  Google Scholar 

  24. Struis RPWJ, De Bleijser J, Leyte JC (1987) Dynamic behavior and some of the molecular properties of water molecules in pure water and in magnesium chloride solutions. J Phys Chem 91(6):1639–1645

    Article  CAS  Google Scholar 

  25. Lang EW, Lüdemann H-D (1990) High pressure NMR studies on water and aqueous solutions. High Pressure NMR 24:129–187

    Article  Google Scholar 

  26. Lang EW, Prielmeier FX (1988) Multinuclear spin-lattice relaxation time studies of supercooled aqueous LiCl-solutions. Ber Bunsenges Phys Chem 92(6):717–724

    Article  CAS  Google Scholar 

  27. Ishiguro S, Yamamoto K, Ohtaki H (1985) On-line controlled calorimetry system and its application to study on complex formation equilibria between zinc(II) and thiocyanate ions in aqueous solution. Anal Sci 1(3):263–269

    Article  CAS  Google Scholar 

  28. Asano T, Le Noble WJ (1978) Activation and reaction volumes in solution. Chem Rev 78(4):407–489

    Article  CAS  Google Scholar 

  29. Van Eldik R, Asano T, Le Noble WJ (1989) Activation and reaction volumes in solution 2. Chem Rev 89(3):549–688

    Article  Google Scholar 

  30. Drljaca A, Hubbard CD, Van Eldik R, Asano T, Basilevsky MV, Le Noble WJ (1998) Activation and reaction volumes in solution 3. Chem Rev 98(6):2167–2290

    Article  CAS  PubMed  Google Scholar 

  31. Wilkes JS (2002) A short history of ionic liquids-from molten salts to neoteric solvents. Green Chem 4(2):73–80

    Article  CAS  Google Scholar 

  32. Wasserscheid P, Welton T (eds) (2008) Ionic liquids in synthesis, 2nd edn. Weinheim, Wiley-VCH

    Google Scholar 

  33. Wang Y, Voth GA (2005) Unique spatial heterogeneity in ionic liquids. J Am Chem Soc 127(35):12192–12193

    Article  CAS  PubMed  Google Scholar 

  34. Canongia Lopes JN, Padua AA (2006) Nanostructural organization in ionic liquids. J Phys Chem B 110(7):3330–3335

    Article  CAS  PubMed  Google Scholar 

  35. Triolo A, Russina O, Bleif HJ, Di Cola E (2007) Nanoscale segregation in room temperature ionic liquids. J Phys Chem B 111(18):4641–4644

    Article  CAS  PubMed  Google Scholar 

  36. Atkin R, Warr GG (2008) The smallest amphiphiles: nanostructure in protic room-temperature ionic liquids with short alkyl groups. J Phys Chem B 112(14):4164–4166

    Article  CAS  PubMed  Google Scholar 

  37. Yamamuro O, Yamada T, Kofu M, Nakakoshi M, Nagao M (2011) Hierarchical structure and dynamics of an ionic liquid 1-octyl-3-methylimidazolium chloride. J Chem Phys 135(5):054508

    Article  PubMed  Google Scholar 

  38. Kofu M, Nagao M, Ueki T, Kitazawa Y, Nakamura Y, Sawamura S, Watanabe M, Yamamuro O (2013) Heterogeneous slow dynamics of imidazolium-based ionic liquids studied by neutron spin echo. J Phys Chem B 117(9):2773–2781

    Article  CAS  PubMed  Google Scholar 

  39. Jessop PG, Jessop DA, Fu D, Phan L (2012) Solvatochromic parameters for solvents of interest in green chemistry. Green Chem 14(5):1245–1259

    Google Scholar 

  40. Reichardt C (2005) Polarity of ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes. Green Chem 7(5):339–351

    Google Scholar 

  41. Padró JM, Reta M (2016) Solvatochromic parameters of imidazolium-, hydroxyammonium-, pyridinium- and phosphonium-based room temperature ionic liquids. J Mol Liq 213:107–114

    Article  Google Scholar 

  42. Zhang XX, Liang M, Ernsting NP, Maroncelli M (2013) Complete solvation response of coumarin 153 in ionic liquids. J Phys Chem B 117(16):4291–4304

    Article  CAS  PubMed  Google Scholar 

  43. Nagasawa Y, Miyasaka H (2014) Ultrafast solvation dynamics and charge transfer reactions in room temperature ionic liquids. Phys Chem Chem Phys 16(26):13008–13026

    Article  CAS  PubMed  Google Scholar 

  44. Arzhantsev S, Jin H, Baker GA, Maroncelli M (2007) Measurements of the complete solvation response in ionic liquids. J Phys Chem B 111(18):4978–4989

    Article  CAS  PubMed  Google Scholar 

  45. Muramatsu M, Nagasawa Y, Miyasaka H (2011) Ultrafast solvation dynamics in room temperature ionic liquids observed by three-pulse photon echo peak shift measurements. J Phys Chem A 115(16):3886–3894

    Article  CAS  PubMed  Google Scholar 

  46. Hayamizu K, Aihara Y, Nakagawa H, Nukuda T, Price WS (2004) Ionic conduction and ion diffusion in binary room-temperature ionic liquids composed of [emim][BF4] and LiBF4. J Phys Chem B 108(50):19527–19532

    Article  CAS  Google Scholar 

  47. Tokuda H, Tsuzuki S, Susan MA, Hayamizu K, Watanabe M (2006) How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. J Phys Chem B 110(39):19593–19600

    Article  CAS  PubMed  Google Scholar 

  48. Kimura Y, Kida Y, Matsushita Y, Yasaka Y, Ueno M, Takahashi K (2015) Universality of viscosity dependence of translational diffusion coefficients of carbon monoxide, diphenylacetylene, and diphenylcyclopropenone in ionic liquids under various conditions. J Phys Chem B 119(25):8096–8103

    Article  CAS  PubMed  Google Scholar 

  49. Castner EW Jr, Margulis CJ, Maroncelli M, Wishart JF (2011) Ionic liquids: structure and photochemical reactions. Annu Rev Phys Chem 62:85–105

    Article  CAS  PubMed  Google Scholar 

  50. Rumble CA, Maroncelli M (2018) Solvent controlled intramolecular electron transfer in mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate and acetonitrile. J Chem Phys 148(19):193801

    Article  PubMed  Google Scholar 

  51. Wang P, Wenger B, Humphry-Baker R, Moser JE, Teuscher J, Kantlehner W, Mezger J, Stoyanov EV, Zakeeruddin SM, Gratzel M (2005) Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids. J Am Chem Soc 127(18):6850–6856

    Article  CAS  PubMed  Google Scholar 

  52. Ozawa R, Hamaguchi H (2001) Does photoisomerization proceed in an ionic liquid? Chem Lett 30(7):736–737

    Article  Google Scholar 

  53. Gangamallaiah V, Dutt GB (2011) Photoisomerization dynamics of 3,3′-diethyloxadicarbocyanine iodide in ionic liquids: breakdown of hydrodynamic Kramers model. J Chem Phys 135(17):174505

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Takamuku .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takamuku, T., Yamaguchi, T. (2021). Overview of Liquids and Liquid-Based Systems. In: Nishiyama, K., Yamaguchi, T., Takamuku, T., Yoshida, N. (eds) Molecular Basics of Liquids and Liquid-Based Materials. Physical Chemistry in Action. Springer, Singapore. https://doi.org/10.1007/978-981-16-5395-7_1

Download citation

Publish with us

Policies and ethics