Skip to main content

Human Health Effects of Particulate Matter

  • Chapter
  • First Online:
Airborne Particulate Matter

Abstract

With increased industrialization and number of pollutants, a large proportion of world population today is exposed to polluted air, especially the urban population. The particulate matter (PM) in the air is responsible for various respiratory and cardiovascular morbidity and mortality worldwide. It enters the lungs through the airways and settles in the alveoli inducing inflammatory response and surge in the pro-inflammatory biomarkers. The inflammatory and pro-inflammatory cytokines are released, which lead to systemic inflammation and oxidative damage causing various cardiopulmonary disorders. The polluted air contains PM of different sizes and constituents that are released in the air from different sources. The major health-related concern is from PMs that are less than 10 μm in diameter as they have larger surface area per unit volume and can easily penetrate through the airways, readily absorbed, go deeper in the circulation, and thus are more damaging than the larger size particles.

Evidence from multiple studies suggests that the exposure to increased PM in the air is the principal cause for increased respiratory and cardiovascular disorders like rhinitis, asthma, chronic obstructive pulmonary disease (COPD), hypertension, atherosclerosis, and lung cancer. All of these effects are mediated through systemic inflammation and oxidative stress. Clinical studies based on dietary administration (mainly antioxidants to counter the pro-inflammatory response) have suggested some therapeutic approaches, but there is limited research in the area and variability in the data available so far. Therefore, further research is needed to identify the exact mechanism of damage caused to the cardiopulmonary and nervous system so that appropriate intervention and amelioration strategies may be offered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-shair K, Kolsum U, Dockry R, Morris J, Singh D, Vestbo J (2011) Biomarkers of systemic inflammation and depression and fatigue in moderate clinically stable COPD. Respir Res 12(1):3

    PubMed  PubMed Central  Google Scholar 

  • Alexis NE, Huang YC, Rappold AG, Kehrl H, Devlin R, Peden DB (2014) Patients with asthma demonstrate airway inflammation after exposure to concentrated ambient particulate matter. Am J Respir Crit Care Med 190:235–237

    PubMed  PubMed Central  Google Scholar 

  • Araujo JA, Nel AE (2009) Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress. Part Fibre Toxicol 6:24

    PubMed  PubMed Central  Google Scholar 

  • Araujo JA, Barajas B, Kleinman M, Wang X, Bennett BJ, Gong KW, Navab M, Harkema J, Sioutas C, Lusis AJ et al (2008) Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress. Circ Res 102(5):589–596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson RW, Fuller GW, Anderson HR, Harrison RM, Armstrong B (2010) Urban ambient particle metrics and health: a time-series analysis. Epidemiology:501–511

    Google Scholar 

  • Bai N, Kido T, Suzuki H et al (2011) Changes in atherosclerotic plaques induced by inhalation of diesel exhaust. Atherosclerosis 216:299–306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bai L, Shin S, Burnett RT et al (2019) Exposure to ambient air pollution and the incidence of congestive heart failure and acute myocardial infarction: a population-based study of 5.1 million Canadian adults living in Ontario. Environ Int 132:105004

    CAS  PubMed  Google Scholar 

  • Balakrishnan K, Dey S, Gupta T, Dhaliwal RS, Brauer M, Cohen AJ, Stanaway JD, Beig G et al (2019) The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: the Global Burden of Disease Study 2017. Lancet Planet Health 3(1):e26–e39

    Google Scholar 

  • Becker S, Soukup JM, Gilmour MI, Devlin RB (1996) Stimulation of human and rat alveolar macrophages by urban air particulates: effects on oxidant radical generation and cytokine production. Toxicol Appl Pharmacol 141:637–648

    CAS  PubMed  Google Scholar 

  • Becker S, Mundandhara S, Devlin RB, Madden M (2005) Regulation of cytokine production in human alveolar macrophages and airway epithelial cells in response to ambient air pollution particles: further mechanistic studies. Toxicol Applied Pharmacol 207(2):269–275

    Google Scholar 

  • Becquemin M, Swift D, Bouchikhi A, Roy M, Teillac A (1991) Particle deposition and resistance in the noses of adults and children. Eur Respir J 4:694–702

    CAS  PubMed  Google Scholar 

  • Block ML, Calderón-Garcidueñas L (2009) Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci 32(9):506–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Block ML et al (2004) Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase. FASEB J 18:1618–1620

    CAS  PubMed  Google Scholar 

  • Block ML et al (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69

    CAS  PubMed  Google Scholar 

  • Bolte G, Bischof W, Borte M, Lehmann I, Wichmann HE, Heinrich J, LISA Study Group (2003) Early endotoxin exposure and atopy development in infants: results of a birth cohort study. Clin Exp Allergy 33(6):770–776

    CAS  PubMed  Google Scholar 

  • Brandt EB, Bolcas P, Ruff B, Hershey GKK (2017) cIL-33 signalling contributes to diesel exhaust particles (DEP)-induced asthma exacerbations and recall responses. J Allergy Clin Immunol 139:81

    Google Scholar 

  • Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M, Luepker R, Mittleman M, Samet J, Smith SC Jr, Tager I (2004) Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation 109(21):2655–2671

    PubMed  Google Scholar 

  • Brook RD, Rajagopalan S, Pope CA III, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A (2010) Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121(21):2331–2378

    CAS  PubMed  Google Scholar 

  • Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K (2001) Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175(3):191–199

    CAS  PubMed  Google Scholar 

  • Brown D, Donaldson K, Borm P, Schins R, Dehnhardt M et al (2004) Calcium and ROS-mediated activation of transcription factors and TNF-α cytokine gene expression in macrophages exposed to ultrafine particles. Am J Phys Lung Cell Mol Phys 286:L344–LL53

    CAS  Google Scholar 

  • Brunekreef B, Holgate ST (2002) Air pollution and health. Lancet 360:1233–1242

    CAS  PubMed  Google Scholar 

  • Burbank AJ, Peden DB (2018) Assessing the impact of air pollution on childhood asthma morbidity: how, when, and what to do. Curr Opin Allergy Clin Immunol 18(2):124–131

    PubMed  PubMed Central  Google Scholar 

  • Burnett R, Chen H, Szyszkowicz M, Fann N, Hubbell BC, Pope A, Apte JS et al (2018) Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc Natl Acad Sci 115(38):9592–9597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burte E, Leynaert B, Marcon A, Bousquet J, Benmerad M, Bono R, Carsin AE, de Hoogh K, Forsberg B, Gormand F, Heinrich J (2020) Long-term air pollution exposure is associated with increased severity of rhinitis in 2 European cohorts. J Allergy Clin Immunol 145(3):834–842

    PubMed  Google Scholar 

  • Byers N, Ritchey M, Vaidyanathan A, Brandt AJ, Yip F (2016) Short-term effects of ambient air pollutants on asthma-related emergency department visits in Indianapolis, Indiana, 2007–2011. J Asthma 53:245–252

    CAS  PubMed  Google Scholar 

  • Cadelis G, Tourres R, Molinie J (2014) Short-term effects of the particulate pollutants contained in Saharan dust on the visits of children to the emergency department due to asthmatic conditions in Guadeloupe (French Archipelago of the Caribbean). PLoS One 9:e91136

    PubMed  PubMed Central  Google Scholar 

  • Cakmak S, Dales RE, Burnett RT, Judek S, Coates F, Brook JR (2002) Effects of airborne allergens on emergency visits by children for conjunctivitis and rhinitis. Lancet 359:947–948

    PubMed  Google Scholar 

  • Calderón-Garcidueñas L, Azzarelli B, Acuna H et al (2002) Air Pollution and Brain Damage. Toxicol Pathol 30(3):373–389

    PubMed  Google Scholar 

  • Calderón-Garcidueñas L, Solt AC, Henríquez-Roldán C et al (2008) Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood-brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults. Toxicol Pathol 36(2):289–310

    PubMed  Google Scholar 

  • Campbell-Lendrum D, Prüss-Ustün A (2019) Climate change, air pollution and noncommunicable diseases. Bull World Health Organ 97:160

    PubMed  Google Scholar 

  • Chan RC, Wang M, Li N, Yanagawa Y, Onoé K, Lee JJ, Nel AE (2006) Pro-oxidative diesel exhaust particle chemicals inhibit LPS-induced dendritic cell responses involved in T-helper differentiation. J Allergy Clin Immunol 118(2):455–465

    CAS  PubMed  Google Scholar 

  • Chen L et al (2008) Manufactured aluminum oxide nanoparticles decrease expression of tight junction proteins in brain vasculature. J Neuroimmune Pharmacol 3:286–295

    PubMed  PubMed Central  Google Scholar 

  • Chiamvimonvat N, O’Rourke B, Kamp TJ, Kallen RG, Hofmann F et al (1995) Functional consequences of sulfhydryl modification in the pore-forming subunits of cardiovascular Ca2+ and Na+ channels. Circ Res 76:325–334

    CAS  PubMed  Google Scholar 

  • Chuang KJ, Chan CC, Su TC, Lee CT, Tang CS (2007) The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults. Am J Respir Crit Care Med 176(4):370–376

    CAS  PubMed  Google Scholar 

  • Coetzee WA, Ichikawa H, Hearse DJ (1994) Oxidant stress inhibits Na-Ca-exchange current in cardiac myocytes: mediation by sulfhydryl groups? Am J Phys Heart Circ Phys 266:H909–HH19

    CAS  Google Scholar 

  • Cohen AJ, Ross Anderson H, Ostro B, Pandey KD, Krzyzanowski M et al (2005) The global burden of disease due to outdoor air pollution. J Toxic Environ Health A 68:1301–1307

    CAS  Google Scholar 

  • Correia AW, Pope CA III, Dockery DW, Wang Y, Ezzati M, Dominici F (2013) The effect of air pollution control on life expectancy in the United States: an analysis of 545 US counties for the period 2000 to 2007. Epidemiology 24:23

    PubMed  PubMed Central  Google Scholar 

  • Cui Y, XieX JF, He J, Li Z, Fu M, Hao H, LiuY LJZ, Cowan PJ, Zhu H, Sun Q, Liu Z (2015) Ambient fine particulate matter induces apoptosis of endothelial progenitor cells through reactive oxygen species formation. Cell Physiol Biochem 35(1):353–363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dales R, Liu L, Szyszkowicz M et al (2007) Particulate air pollution and vascular reactivity: the bus stop study. Int Arch Occup Environ Health 81:159–164

    CAS  PubMed  Google Scholar 

  • De Haar C, Hassing I, Bol M, Bleumink R, Pieters R (2006) Ultrafine but not fine particulate matter causes airway inflammation and allergic airway sensitization to co-administered antigen in mice. Clin Exp Allergy 36(11):1469–1479

    PubMed  Google Scholar 

  • de Oliveira BFA, Ignotti E, Artaxo P, do Nascimento Saldiva PH, Junger WL, Hacon S (2012) Risk assessment of PM 2.5 to child residents in Brazilian Amazon region with biofuel production. Environ Health 11:1–11

    Google Scholar 

  • de Oliveira-Fonoff AM, Mady C, Pessoa FG, Fonseca KCB, Salemi VMC et al (2017) The role of air pollution in myocardial remodeling. PLoS One 12(4):e0176084

    PubMed  PubMed Central  Google Scholar 

  • Delfino RJ, Sioutas C, Malik S (2005) Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health. Environ Health Perspect 113:934–946

    PubMed  PubMed Central  Google Scholar 

  • Deng X, Zhang F, Wang L, Rui W, Long F, Zhao Y, Chen D, Ding W (2014) Airborne fine particulate matter induces multiple cell death pathways in human lung epithelial cells. Apoptosis 19(7):1099–1112

    CAS  PubMed  Google Scholar 

  • Devlin RB, Ghio AJ, Kehrl H, Sanders G, Cascio W (2003) Elderly humans exposed to concentrated air pollution particles have decreased heart rate variability. Eur Respir J Suppl 40:76s–80s

    CAS  PubMed  Google Scholar 

  • Dockery DW, Pope CA 3rd, Xu X et al (1993) An association between air pollution and mortality in six U.S. cities. N Engl J Med 329:1753–1759

    CAS  PubMed  Google Scholar 

  • Donaldson K, Stone V (2003) Current hypotheses on the mechanisms of toxicity of ultrafine particles. Ann Ist Super Sanita 39:405–410

    CAS  PubMed  Google Scholar 

  • Donaldson K, Beswick PH, Gilmour PS (1996) Free radical activity associated with the surface of particles: a unifying factor in determining biological activity? Toxicol Lett 88:293–298

    CAS  PubMed  Google Scholar 

  • Dunea D, Iordache S, Pohoata A (2016) Fine particulate matter in urban environments: a trigger of respiratory symptoms in sensitive children. Int J Environ Res Public Health 13

    Google Scholar 

  • Edginton S, O’Sullivan DE, King W et al (2019) Effect of outdoor particulate air pollution on FEV1 in healthy adults: a systematic review and meta-analysis. Occup Environ Med 76:583–591

    PubMed  Google Scholar 

  • EPA (United States Environmental Protection Agency) (n.d.) Air pollution: current and future challenges. https://www.epa.gov/clean-air-act-overview/air-pollution-current-and-future-challenges. Accessed 8 Sept 2020

  • Erickson KL, Medina EA, Hubbard NE (2000) Micronutrients and innate immunity. J Infect Dis 182(Suppl 1):S5–S10

    CAS  PubMed  Google Scholar 

  • Fang Y, Mauzerall DL, Liu J, Fiore AM, Horowitz LW (2013) Impacts of 21st century climate change on global air pollution-related premature mortality. Clim Chang 121:239–253

    CAS  Google Scholar 

  • Fiordelisi A, Piscitelli P, Trimarco B, Coscioni E, Iaccarino G, Sorriento D (2017) The mechanisms of air pollution and particulate matter in cardiovascular diseases. Heart Fail Rev 22:337–347

    CAS  PubMed  Google Scholar 

  • Franchini M, Guida A, Tufano A, Coppola A (2012) Air pollution, vascular disease and thrombosis: linking clinical data and pathogenic mechanisms. J Thromb Haemost 10(12):2438–2451

    CAS  PubMed  Google Scholar 

  • Franklin M, Koutrakis P, Schwartz J (2008) The role of particle composition on the association between PM2. 5 and mortality. Epidemiology 19:680

    PubMed  PubMed Central  Google Scholar 

  • Gaffin JM, Hauptman M, Petty CR, Sheehan WJ, Lai PS, Wolfson JM, Gold DR, Coull BA, Koutrakis P, Phipatanakul W (2017) Nitrogen dioxide exposure in school classrooms of inner-city children with asthma. J Allergy Clin Immunol 141(6):2249–2255

    PubMed  PubMed Central  Google Scholar 

  • Garcia-Rio F, Miravitlles M, Soriano JB, Muñoz L, Duran-Tauleria E, Sánchez G, Sobradillo V, Ancochea J, EPI-SCAN Steering Committee (2010) Systemic inflammation in chronic obstructive pulmonary disease: a population-based study. Respir Res 11(1):63

    PubMed  PubMed Central  Google Scholar 

  • Goel A, Saxena P, Sonwani S, Rathi S, Srivastava A, Bharti AK, Jain S, Singh S, Shukla A, Srivastava A (2021) Health benefits due to reduction in respirable particulates during COVID-19 lockdown in India. Aerosol Air Qual Res 21(5)

    Google Scholar 

  • Gold DR, Litonjua A, Schwartz J et al (2000) Ambient pollution and heart rate variability. Circulation 101(11):1267–1273

    CAS  PubMed  Google Scholar 

  • Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35

    CAS  PubMed  Google Scholar 

  • Greenwell LL, Jones TP, Richards RJ (2002) The collection of PM 10 for toxicological investigation: comparisons between different collecting devices. Environ Monit Assess 79:251–273

    CAS  PubMed  Google Scholar 

  • Gripenbäck S, Lundgren L, Eklund A, Liden C, Skare L et al (2005) Accumulation of eosinophils and T-lymphocytes in the lungs after exposure to pinewood dust. Eur Respir J 25:118–124

    PubMed  Google Scholar 

  • Hartz AM et al (2008) Diesel exhaust particles induce oxidative stress, proinflammatory signaling, and P-glycoprotein up-regulation at the blood-brain barrier. FASEB J 22:2723–2733

    CAS  PubMed  PubMed Central  Google Scholar 

  • He M, Ichinose T, Yoshida S, Nishikawa M, Mori I et al (2010) Urban particulate matter in Beijing, China, enhances allergen-induced murine lung eosinophilia. Inhal Toxicol 22:709–718

    CAS  PubMed  Google Scholar 

  • Hoek G, Brunekreef B, Fischer P, van Wijnen J (2001) The association between air pollution and heart failure, arrhythmia, embolism, thrombosis, and other cardiovascular causes of death in a time series study. Epidemiology:355–357

    Google Scholar 

  • Hoffmann B, Moebus S, Mohlenkamp S et al (2007) Residential exposure to traffic is associated with coronary atherosclerosis. Circulation 116:489–496

    CAS  PubMed  Google Scholar 

  • Hong YC, Lee JT, Kim H, Kwon HJ (2002) Air pollution: a new risk factor in ischemic stroke mortality. Stroke 33(9):2165–2169

    CAS  PubMed  Google Scholar 

  • Huang Y-CT, Ghio AJ (2006) Vascular effects of ambient pollutant particles and metals. Curr Vasc Pharmacol 4:199–203

    CAS  PubMed  Google Scholar 

  • Huang W, Tan J, Kan H et al (2009) Visibility, air quality and daily mortality in Shanghai, China. Sci Total Environ 407:3295–3300

    CAS  PubMed  Google Scholar 

  • Huang Q, Zhang J, Peng S, Tian M, Chen J, Shen H (2014) Effects of water soluble PM2. 5 extracts exposure on human lung epithelial cells (A549): a proteomic study. J Applied Toxicol 34(6):675–687

    Google Scholar 

  • Huang KL, Liu SY, Chou CC, Lee YH, Cheng TJ (2017) The effect of size-segregated ambient particulate matter on Th1/Th2-like immune responses in mice. PLoS One 12(2):e0173158

    PubMed  PubMed Central  Google Scholar 

  • Huynh M, Woodruff TJ, Parker JD, Schoendorf KC (2006) Relationships between air pollution and preterm birth in California. Paediatr Perinat Epidemiol 20:454–461

    PubMed  Google Scholar 

  • Iannuzzi A, Verga MC, Renis M et al (2010) Air pollution and carotid arterial stiffness in children. Cardiol Young 20:186–190

    PubMed  Google Scholar 

  • Illum L (2000) Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci 11:1–18

    CAS  PubMed  Google Scholar 

  • Jalava PI, Salonen RO, Pennanen AS et al (2007) Heterogeneities in inflammatory and cytotoxic responses of RAW 264.7 macrophage cell line to urban air coarse, fine, and ultrafine particles from six European sampling campaigns. InhalToxicol 19:213–225

    CAS  Google Scholar 

  • Jedrychowski WA, Perera FP, Majewska R, Camman D, Spengler JD, Mroz E, Stigter L, Flak E, Jacek R (2014) Separate and joint effects of tranplacental and postnatal inhalatory exposure to polycyclic aromatic hydrocarbons: prospective birth cohort study on wheezing events. Pediatr Pulmonol 49(2):162–172

    PubMed  Google Scholar 

  • Jung M, Cho D, Shin K (2019) The impact of particulate matter on outdoor activity and mental health: a matching approach. Int J Environ Res Public Health 16(16):2983

    PubMed Central  Google Scholar 

  • Katanoda K, Sobue T, Satoh H, Tajima K, Suzuki T, Nakatsuka H, Takezaki T, Nakayama T, Nitta H, Tanabe K, Tominaga S (2011) An association between long-term exposure to ambient air pollution and mortality from lung cancer and respiratory diseases in Japan. J Epidemiol 21(2):132–143

    PubMed  PubMed Central  Google Scholar 

  • Kelly FJ (2003) Oxidative stress: its role in air pollution and adverse health effects. Occup Environ Med 60:612–616

    PubMed  PubMed Central  Google Scholar 

  • Kelly FJ, Fussell JC (2012) Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos Environ 60:504–526

    CAS  Google Scholar 

  • Kelly FJ, Fussell JC (2017) Role of oxidative stress in cardiovascular disease outcomes following exposure to ambient air pollution. Free Radic Biol Med 110:345–367

    CAS  PubMed  Google Scholar 

  • Ki-Hyun K, Kabir E, Kabir S (2015) A review on the human health impact of airborne particulate matter. Environ Int 74:136–143

    Google Scholar 

  • Knuckles TL, Buntz JG, Paffett M et al (2011) Formation of vascular S-nitrosothiols and plasma nitrates/nitrites following inhalation of diesel emissions. J Toxicol Environ Health A 74:828–837

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koenig JQ (2000) Health effects of particulate matter. In: Health effects of ambient air pollution. Springer, pp 115–137

    Google Scholar 

  • Kris-Etherton PM, Harris WS, Appel LJ, Association AHANCAH (2003) Omega-3 fatty acids and cardiovascular disease: new recommendations from the American Heart Association. Arterioscler Thromb Vasc Biol 23(2):151–152

    CAS  PubMed  Google Scholar 

  • Künzli N, Tager IB (2005) Air pollution: from lung to heart. Swiss Med Wkly 135:697–702

    PubMed  Google Scholar 

  • Künzli N, Jerrett M, Mack WJ, Beckerman B, LaBree L, Gilliland F, Thomas D, Peters J, Hodis HN (2005) Ambient air pollution and atherosclerosis in Los Angeles. Environ Health Perspect 113(2):201–206

    PubMed  Google Scholar 

  • Laden F, Schwartz J, Speizer FE et al (2006) Reduction in fine particulate air pollution and mortality: extended follow-up of the Harvard six cities study. Am J Respir Crit Care Med 173:667–672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lambrechtsen J, Gerke O, Egstrup K et al (2012) The relation between coronary artery calcification in asymptomatic subjects and both traditional risk factors and living in the city centre: a Dan-Risk substudy. J Intern Med 271:444–450

    CAS  PubMed  Google Scholar 

  • Langrish JP, Mills NL, Chan JK et al (2009) Beneficial cardiovascular effects of reducing exposure to particulate air pollution with a simple facemask. Part Fibre Toxicol 6:8

    PubMed  PubMed Central  Google Scholar 

  • Langrish JP, Li X, Wang S et al (2011) Reducing personal exposure to particulate air pollution improves cardiovascular health in patients with coronary heart disease. Environ Health Perspect 120:367–372

    Google Scholar 

  • Langrish JP, Li X, Wang S et al (2012) Reducing personal exposure to particulate air pollution improves cardiovascular health in patients with coronary heart disease. Environ Health Perspect 120(3):367–372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li XY, Gilmour PS, Donaldson K, MacNee W (1997) In vivo and in vitro proinflammatory effects of particulate air pollution (PM10). Environ Health Perspect 105(suppl 5):1279–1283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Wang M, Bramble LA, Schmitz DA, Schauer JJ, Sioutas C, Harkema JR, Nel AE (2009) The adjuvant effect of ambient particulate matter is closely reflected by the particulate oxidant potential. Environ Health Perspect 117(7):1116–1123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Zhou Y, Liu S et al (2017) Association between exposure to ambient particulate matter and chronic obstructive pulmonary disease: results from a cross-sectional study in China. Thorax 72:788–795

    PubMed  Google Scholar 

  • Loh LC, Vyas B, Kanabar V, Kemeny DM, O’Connor BJ (2006) Inhaled endotoxin in healthy human subjects, A dose-related study on systemic effects and peripheral CD4þ and CD8þ T cells. Respir Med 100:519–528

    CAS  PubMed  Google Scholar 

  • Lucking AJ, Lundback M, Mills NL, Faratian D, Barath SL, Pourazar J, Cassee FR, Donaldson K, Boon NA, Badimon JJ, Sandstrom T (2008) Diesel exhaust inhalation increases thrombus formation in man. Eur Heart J 29(24):3043–3051

    CAS  PubMed  Google Scholar 

  • Lund AK, Lucero J, Harman M, Madden MC, McDonald JD, Seagrave JC, Campen MJ (2011) The oxidized low-density lipoprotein receptor mediates vascular effects of inhaled vehicle emissions. Am J Respir Crit Care Med 184(1):82–91

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lundback M, Mills NL, Lucking A et al (2009) Experimental exposure to diesel exhaust increases arterial stiffness in man. Part Fibre Toxicol 6:7

    PubMed  PubMed Central  Google Scholar 

  • Magari SR, Hauser R, Schwartz J, Williams PL, Smith TJ, Christiani DC (2001) Association of heart rate variability with occupational and environmental exposure to particulate air pollution. Circulation 104:986–991

    CAS  PubMed  Google Scholar 

  • Manojkumar N, Srimuruganandam B (2019) Health effects of particulate matter in major Indian cities. Int J Environ Health Res 9:1–3

    Google Scholar 

  • McGee MA, Kamal AS, McGee JK, Wood CE, Dye JA, Krantz QT, Landis MS, Gilmour MI, Gavett SH (2015) Differential effects of particulate matter upwind and downwind of an urban freeway in an allergic mouse model. Environ Sci Technol 49(6):3930–3939

    CAS  PubMed  Google Scholar 

  • McGeer PL et al (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38:1285–1291

    CAS  PubMed  Google Scholar 

  • Mehta M, Chen L-C, Gordon T, Rom W, Tang M-S (2008) Particulate matter inhibits DNA repair and enhances mutagenesis. Mutat Res 657:116–121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Milanzi E, Koppelman G, Smit H et al (2018) Air pollution exposure during different time windows from birth and lung function growth up to adolescence. Occup Environ Med 75:A28

    Google Scholar 

  • Miller MR (2020) Oxidative stress and the cardiovascular effects of air pollution. Free Radic Biol Med

    Google Scholar 

  • Miller MR, Raftis JB, Langrish JP, McLean SG, Samutrtai P, Connell SP, Wilson S, Vesey AT, Fokkens PH, Boere AJ, Krystek P (2017) Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano 11(5):4542–4552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mills N, Törnqvist H, Gonzales M et al (2007) Ischemic and thrombotic effects of dilute diesel-exhaust inhalation in men with coronary heart disease. N Engl J Med 357:1075–1082

    CAS  PubMed  Google Scholar 

  • Miyata R, van Eeden SF (2011) The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter. Toxicol Appl Pharmacol 257:209–226

    CAS  PubMed  Google Scholar 

  • Moniruzzaman S, Hagerhed Engman L, James P, Sigsgaard T, Thorne PS, Sundell J, Bornehag CG (2012) Levels of endotoxin in 390 Swedish homes: determinants and the risk for respiratory symptoms in children. Int J Environ Health Res 22:22–36

    CAS  PubMed  Google Scholar 

  • Nemmar A, Vanbilloen H, Hoylaerts M, Hoet P, Verbruggen A, Nemery B (2001) Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med 164:1665–1668

    CAS  PubMed  Google Scholar 

  • Nemmar A, Hoet PM, Vanquickenborne B, Dinsdale D, Thomeer M et al (2002) Passage of inhaled particles into the blood circulation in humans. Circulation 105:411–414

    CAS  PubMed  Google Scholar 

  • Noh J, Sohn J, Cho J, Cho SK, Choi YJ, Kim C, Shin DC (2016) Short-term effects of ambient air pollution on emergency department visits for Asthma: an assessment of effect modification by prior allergic disease history. J Prev Med Public Health 49:329–341

    PubMed  PubMed Central  Google Scholar 

  • Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, Kreyling W, Cox C (2002) Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A 65:1531–1543

    CAS  PubMed  Google Scholar 

  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R et al (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445

    PubMed  Google Scholar 

  • Ohlwein S, Kappeler R, Joss MK, Künzli N, Hoffmann B (2019) Health effects of ultrafine particles: a systematic literature review update of epidemiological evidence. Int J Public Health 64:547–559

    PubMed  Google Scholar 

  • Orru H, Maasikmets M, Lai T, Tamm T, Kaasik M et al (2011) Health impacts of particulate matter in five major Estonian towns: main sources of exposure and local differences. Air Quality Atmos Health 4:247–258

    CAS  Google Scholar 

  • Ostro B, Broadwin R, Green S, Feng W-Y, Lipsett M (2006) Fine particulate air pollution and mortality in nine California counties: results from CALFINE. Environ Health Perspect 114:29–33

    PubMed  Google Scholar 

  • Ozturk AB, Bayraktar R, Gogebakan B, Mumbuc S, Bayram H (2017) Comparison of inflammatory cytokine release from nasal epithelial cells of non-atopic non-rhinitic, allergic rhinitic and polyp subjects and effects of diesel exhaust particles in vitro. Allergol Immunopathol 45(5):473–481

    CAS  Google Scholar 

  • Park E-J, Roh J, Kim Y, Park K, Kim D-S, Yu S-D (2011) PM 2.5 collected in a residential area induced Th1-type inflammatory responses with oxidative stress in mice. Environ Res 111:348–355

    CAS  PubMed  Google Scholar 

  • Pepelko WE (1987) Feasibility of dose adjustment based on differences in long-term clearance rates of inhaled particulate matter in humans and laboratory animals. Regul Toxicol Pharmacol 7(3):236–252

    CAS  PubMed  Google Scholar 

  • Peretz A, Sullivan JH, Leotta DF et al (2008) Diesel exhaust inhalation elicits acute vasoconstriction in vivo. Environ Health Perspect 116:937–942

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phipps JC, Aronoff DM, Curtis JL et al (2010) Cigarette smoke exposure impairs pulmonary bacterial clearance and alveolar macrophage complement-mediated phagocytosis of Streptococcus pneumoniae. Infect Immun 78:1214–1220

    CAS  PubMed  Google Scholar 

  • Pope CA III, Verrier RL, Lovett EG, Larson AC, Raizenne ME et al (1999) Heart rate variability associated with particulate air pollution. Am Heart J 138:890–899

    PubMed  Google Scholar 

  • Pope CA III, Burnett RT, Thun MJ, Calle EE, Krewski D et al (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287:1132–1141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pope CA III, Burnett RT, Thurston GD, Thun MJ, Calle EE et al (2004) Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation 109:71–77

    PubMed  Google Scholar 

  • Pope CA III, Ezzati M, Dockery DW (2009) Fine-particulate air pollution and life expectancy in the United States. N Engl J Med 360:376–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qu Y, Pan Y, Niu H et al (2018) Short-term effects of fine particulate matter on non-accidental and circulatory diseases mortality: a time series study among the elder in Changchun. PLoS One 13(12):e0209793

    PubMed  PubMed Central  Google Scholar 

  • Raaschou-Nielsen O, Andersen ZJ, Beelen R et al (2013) Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol 14:813–822

    PubMed  Google Scholar 

  • Raftis JB, Miller MR (2019) Nanoparticle translocation and multi-organ toxicity: a particularly small problem. Nano Today 26:8–12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman I, MacNee W (1996) Role of oxidants/antioxidants in smoking-induced lung diseases. Free Radic Biol Med 21:669–681

    CAS  PubMed  Google Scholar 

  • Renwick LC, Brown D, Clouter A, Donaldson K (2004) Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med 61(5):442–447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riva DR, Magalhães CB, Lopes AA (2011) Low dose of fine particulate matter (PM2.5) can induce acute oxidative stress, inflammation and pulmonary impairment in healthy mice. Inhal Toxicol 23:257–267

    CAS  PubMed  Google Scholar 

  • Rudell B, Sandström T, Stjernberg N, Kolmodin-Hedman B (1990) Controlled diesel exhaust exposure in an exposure chamber: pulmonary effects investigated with bronchoalveolar lavage. J Aerosol Sci 21:S411–SS14

    Google Scholar 

  • Saini M, Yadav AS (2019) DNA damage in the peripheral blood lymphocytes of asthmatic patients in relation to disease progression. Nucleus 62(1):57–62

    Google Scholar 

  • Samet JM, Dominici F, Curriero FC, Coursac I, Zeger SL (2000) Fine particulate air pollution and mortality in 20 US cities, 1987–1994. N Engl J Med 343:1742–1749

    CAS  PubMed  Google Scholar 

  • Samoli E, Analitis A, Touloumi G, Schwartz J, Anderson HR et al (2005) Estimating the exposure–response relationships between particulate matter and mortality within the APHEA multicity project. Environ Health Perspect 113:88–95

    CAS  PubMed  Google Scholar 

  • Santus P, Corsico A, Solidoro P, Braido F, Di Marco F, Scichilone N (2014) Oxidative stress and respiratory system: pharmacological and clinical reappraisal of N-acetylcysteine. COPD 11(6):705–717

    PubMed  Google Scholar 

  • Saxena P, Sonwani S (2019) Primary criteria air pollutants: environmental health effects. In: Criteria air pollutants and their impact on environmental health. Springer, Singapore, pp 49–82

    Google Scholar 

  • Schlesinger RB (1990) The interaction of inhaled toxicants with respiratory tract clearance mechanisms. Crit Rev Toxicol 20:257–286

    CAS  PubMed  Google Scholar 

  • Schwartz J (2000) Harvesting and long term exposure effects in the relation between air pollution and mortality. Am J Epidemiol 151:440–448

    CAS  PubMed  Google Scholar 

  • Seifert G, Schilling K, Steinhäuser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7(3):194–206

    CAS  PubMed  Google Scholar 

  • Sharma RK, Agrawal M (2005) Biological effects of heavy metals: an overview. J Environ Biol 26:301–313

    CAS  PubMed  Google Scholar 

  • Shou Y, Huang Y, Zhu X, Liu C, Hu Y, Wang H (2019) A review of the possible associations between ambient PM2.5 exposures and the development of Alzheimer’s disease. Ecotoxicol Environ Saf 15:344–352

    Google Scholar 

  • Shukla A, Timblin C, BeruBe K (2000) Inhaled particulate matter causes expression of nuclear factor (NF)-kappaB related genes and oxidant-dependent NF-kappaB activation in vitro. Am J Respir Cell Mol Biol 23:182–187

    CAS  PubMed  Google Scholar 

  • Signorelli SS, Conti GO, Zanobetti A, Baccarelli A, Fiore M, Ferrante M (2019) Effect of particulate matter-bound metals exposure on prothrombotic biomarkers: a systematic review. Environ Res 177:108573

    CAS  PubMed  Google Scholar 

  • Sinden NJ, Stockley RA (2010) Systemic inflammation and comorbidity in COPD: a result of ‘overspill’ of inflammatory mediators from the lungs? Review of the evidence. Thorax 65:930–936

    PubMed  Google Scholar 

  • Singh U, Devaraj S, Jialal I (2005) Vitamin E, oxidative stress, and inflammation. Annu Rev Nutr 25:151–174

    CAS  PubMed  Google Scholar 

  • Smith SC Jr, Blair SN, Bonow RO, Brass LM, Cerqueira MD et al (2001) AHA/ACC Scientific Statement: AHA/ACC guidelines for preventing heart attack and death in patients with atherosclerotic cardiovascular disease: 2001 update: a statement for healthcare professionals from the American Heart Association and the American College of Cardiology. Circulation 104:1577

    PubMed  Google Scholar 

  • Sonwani S, Kulshreshtha U (2016) Particulate matter levels and it’s associated health risks in East Delhi. In: Proceedings of Indian aerosol science and technology association conference on aerosol and climate change: insight and challenges. IASTA Bull vol 22, no 1–2, pp 269–272

    Google Scholar 

  • Sonwani S, Saxena P (2016) Identifying the sources of primary air pollutants and their impact on environmental health: a review. IJETR 6(2):111–130

    Google Scholar 

  • Sonwani S, Madaan S, Arora J, Rangra D, Mongia N, Vats T, Saxena P (2021a) Inhalation exposure to atmospheric nanoparticles and its associated impacts on human health: a review. Front Sustain Cities 3:690444

    Google Scholar 

  • Sonwani S, Saxena P, Shukla A (2021b) Carbonaceous aerosol characterization and their relationship with meteorological parameters during summer monsoon and winter monsoon at an industrial region in Delhi, India. Earth Space Sci 8(4):e2020EA001303

    Google Scholar 

  • Sonwani S, Saxena P, Khillare PS (2022) Profile of atmospheric particulate PAHs near busy roadway in tropical megacity, India. Inhal Toxicol 34(1–2):39–50

    CAS  PubMed  Google Scholar 

  • Strak M, Hoek G, Godri KJ, Gosens I, Mudway IS, van Oerle R, Spronk HM, Cassee FR, Lebret E, Kelly FJ, Harrison RM (2013) Composition of PM affects acute vascular inflammatory and coagulative markers-the RAPTES project. PLoS One 8(3):e58944

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Q, Wang A, Jin X et al (2005) Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. JAMA 294:3003–3010

    CAS  PubMed  Google Scholar 

  • Suwa T, Hogg J, Quinlan K, Ohgami A, Vincent R, Svd E (2002) Particulate air pollution induces progression of atherosclerosis. J Am Coll Cardiol 39:935–942

    CAS  PubMed  Google Scholar 

  • Törnqvist H, Mills NL, Gonzalez M et al (2007) Persistent endothelial dysfunction in humans after diesel exhaust inhalation. Am J Respir Crit Care Med 176(4):395–400

    PubMed  Google Scholar 

  • Turner MC, Krewski D, Pope CA III, Chen Y, Gapstur SM, Thun MJ (2011) Long-term ambient fine particulate matter air pollution and lung cancer in a large cohort of never-smokers. Am J Respir Crit Care Med 184:1374–1381

    PubMed  Google Scholar 

  • Urch B, Silverman F, Corey P et al (2005) Acute blood pressure responses in healthy adults during controlled air pollution exposures. Environ Health Perspect 113:1052–1055

    PubMed  PubMed Central  Google Scholar 

  • Valavanidis A, Fiotakis K, Vlachogianni T (2008) Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J Environ Sci Health C 26:339–362

    CAS  Google Scholar 

  • Van Hee VC, Adar SD, Szpiro AA, Barr RG, Bluemke DA, Diez Roux AV, Gill EA, Sheppard L, Kaufman JD (2009) Exposure to traffic and left ventricular mass and function: the Multi-Ethnic Study of Atherosclerosis. Am J Respir Crit Care Med 179(9):827–834

    PubMed  PubMed Central  Google Scholar 

  • Vincent R, Kumarathasan P, Goegan P et al (2001) Inhalation toxicology of urban ambient particulate matter: acute cardiovascular effects in rats. Res Rep Health Eff Inst 104:5–54

    Google Scholar 

  • Wang YH, Lin ZY, Yang LW (2016) PM2.5 exacerbate allergic asthma involved in autophagy signaling pathway in mice. Int J Clin Exp Pathol 9:12247–12261

    CAS  Google Scholar 

  • Wang YL, Gao W, Li Y, Wang YF (2017) Concentration-dependent effects of PM2.5 mass on expressions of adhesion molecules and inflammatory cytokines in nasal mucosa of rats with allergic rhinitis. Eur Arch Otorhinolaryngol 274:3221–3229

    PubMed  Google Scholar 

  • Wold LE, Ying Z, Hutchinson KR, Velten M, Gorr MW, Velten C, Youtz DJ, Wang A, Lucchesi PA, Sun Q, Rajagopalan S (2012) Cardiovascular remodeling in response to long-term exposure to fine particulate matter air pollution. Circ Heart Fail 5(4):452–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Yang D, Wei H et al (2015) Association of chemical constituents and pollution sources of ambient fine particulate air pollution and biomarkers of oxidative stress associated with atherosclerosis: a panel study among young adults in Beijing, China. Chemosphere 135:347–353

    CAS  PubMed  Google Scholar 

  • Wu J, Zhong T, Zhu Y, Ge D, Lin X, Li Q (2019) Effects of particulate matter (PM) on childhood asthma exacerbation and control in Xiamen, China. BMC Pediatr 19:194

    PubMed  PubMed Central  Google Scholar 

  • Xing WJ, Kong FJ, Li GW, Qiao K, Zhang WH et al (2011) Calcium-sensing receptors induce apoptosis during simulated ischaemia–reperfusion in Buffalo rat liver cells. Clin Exp Pharmacol Physiol 38:605–612

    CAS  PubMed  Google Scholar 

  • Yadav SA, Saini M (2016) Evaluation of systemic antioxidant level and oxidative stress in relation to lifestyle and disease progression in asthmatic patients. J Med Biochem 35(1):55–62. https://doi.org/10.1515/jomb-2015-0006

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Peng X, Huang W et al (2012) A time-stratified case-crossover study of fine particulate matter air pollution and mortality in Guangzhou, China. Int Arch Occup Environ Health 85:579–585

    CAS  PubMed  Google Scholar 

  • Yang BY, Qian Z, Howard SW et al (2018) Global association between ambient air pollution and blood pressure: a systematic review and meta-analysis. Environ Pollut 235:576–588

    CAS  PubMed  Google Scholar 

  • Yorifuji T, Yamamoto E, Tsuda T, Kawakami N (2005) Health impact assessment of particulate matter in Tokyo, Japan. Arch Environ Occup Health 60(4):179–185

    PubMed  Google Scholar 

  • Yoshizaki K, Brito J, Toledo A, Nakagawa N, Piccin V et al (2010) Subchronic effects of nasally instilled diesel exhaust particulates on the nasal and airway epithelia in mice. Inhal Toxicol 22:610–617

    CAS  PubMed  Google Scholar 

  • Zanobetti A, Franklin M, Koutrakis P, Schwartz J (2009) Fine particulate air pollution and its components in association with cause-specific emergency admissions. Environ Health 8:58

    PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zhong W, Meng Q (2015) Ambient PM2.5 exposure exacerbates severity of allergic asthma in previously sensitized mice. J Asthma 52:785–794

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manisha Saini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saini, M., Joon, M., Saini, S.K. (2022). Human Health Effects of Particulate Matter. In: Sonwani, S., Shukla, A. (eds) Airborne Particulate Matter. Springer, Singapore. https://doi.org/10.1007/978-981-16-5387-2_9

Download citation

Publish with us

Policies and ethics