Skip to main content

Toxicological Implications of Fine Particulates: Sources, Chemical Composition, and Possible Underlying Mechanism

  • Chapter
  • First Online:
Airborne Particulate Matter

Abstract

The effects of atmospheric fine particles on human health have become an utmost concern worldwide. Particulate matter is a complex and dynamic combination of a mixture of solid and liquid substances with several biological and chemical components. Various toxicological and epidemiological studies indicated that the fine particles create several health issues such as respiratory and cardiopulmonary disorders. The present chapter provides the information regarding regulations and standards set by various countries and organizations to regulate the atmospheric concentration of fine particles and discuss the primary and secondary sources of fine particulate pollution. This chapter demonstrated the biological and chemical components of fine particles that play a critical role in the toxicological implications of fine particulates. In addition, the justifications for the origin or sources of biological and chemical compositions and their impacts on human health become a concern in this chapter. The current chapter also aims to provide a brief overview of the molecular mechanisms connecting fine particulate exposure and health effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas I, Badran G, Verdin A, Ledoux F, Roumie M, Guidice JML et al (2019) In vitro evaluation of organic extractable matter from ambient PM2.5 using human bronchial epithelial BEAS-2B cells: cytotoxicity, oxidative stress, pro-inflammatory response, genotoxicity, and cell cycle deregulation. Environ Res 171:510–522

    CAS  PubMed  Google Scholar 

  • Abu-Allaban M, El-Khalili MM (2014) Antiquity impact of air pollution at Gadara, Jordan. Mediter Archaeol Archaeom 14(1)

    Google Scholar 

  • Ajmani GS, Suh HH, Wroblewski KE, Kern DW, Schumm LP, McClintock MK et al (2016) Fine particulate matter exposure and olfactory dysfunction among urban-dwelling older US adults. Environ Res 151:797–803

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alemayehu YA, Asfaw SL, Terfie TA (2020) Exposure to urban particulate matter and its association with human health risks. Environ Sci Pollut Res Int

    Google Scholar 

  • Allen J, Bartlett K, Graham M, Jackson P (2011) Ambient concentrations of airborne endotoxin in two cities in the interior of British Columbia, Canada. J Environ Monit 13(3):631–640

    CAS  PubMed  Google Scholar 

  • Amoatey P, Sicard P, De Marco A, Khaniabadi YO (2020) Long-term exposure to ambient PM2.5 and impacts on health in Rome, Italy. Clin Epidemiol Global Health 8(2):531–535

    Google Scholar 

  • ANSA, Afghan National Standard Authority (2011) Air quality standard. Kabul, Afghanistan

    Google Scholar 

  • Atkinson RW, Mills IC, Walton HA, Anderson HR (2015) Fine particle components and health—a systematic review and meta-analysis of epidemiological time series studies of daily mortality and hospital admissions. J Expo Sci Environ Epidemiol 25(2):208–214

    CAS  PubMed  Google Scholar 

  • Badran G, Verdin A, Grare C, Abbas I, Achour D, Ledoux F et al (2020) Toxicological appraisal of the chemical fractions of ambient fine (PM2.5-0.3) and quasi-ultrafine (PM0.3) particles in human bronchial epithelial BEAS-2B cells. Environ Pollut 263:114620

    CAS  PubMed  Google Scholar 

  • Bell ML, Zanobetti A, Dominici F (2013) Evidence on vulnerability and susceptibility to health risks associated with short-term exposure to particulate matter: a systematic review and meta-analysis. Am J Epidemiol 178(6):865–876

    PubMed  PubMed Central  Google Scholar 

  • Bloemen HT, Mooibroek D, Cassee FR, Van Putten EM (2008) Composition and sources of fine particulate matter (PM2.5) in the Netherlands. RIVM report 863001007

    Google Scholar 

  • Bootdee S, Chantara S, Prapamontol T (2016) Determination of PM2.5 and polycyclic aromatic hydrocarbons from incense burning emission at shrine for health risk assessment. Atmos Pollut Res 7(4):680–689

    Google Scholar 

  • Brauer M, Freedman G, Frostad J, Van Donkelaar A, Martin RV, Dentener F et al (2016) Ambient air pollution exposure estimation for the global burden of disease 2013. Environ Sci Technol 50(1):79–88

    CAS  PubMed  Google Scholar 

  • Brook RD, Rajagopalan S, Pope CA III, Brook JR, Bhatnagar A, Diez-Roux AV et al (2010) Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121(21):2331–2378

    CAS  PubMed  Google Scholar 

  • Brüggemann E, Gerwig H, Gnauk T, Müller K, Herrmann H (2009) Influence of seasons, air mass origin and day of the week on size-segregated chemical composition of aerosol particles at a kerbside. Atmos Environ 43(15):2456–2463

    Google Scholar 

  • Cao C, Jiang W, Wang B, Fang J, Lang J, Tian G et al (2014) Inhalable microorganisms in Beijing’s PM2.5 and PM10 pollutants during a severe smog event. Environ Sci Technol 48(3):1499–1507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carty CL, Gehring U, Cyrys J, Bischof W, Heinrich J (2003) Seasonal variability of endotoxin in ambient fine particulate matter. J Environ Monit 5(6):953–958

    CAS  PubMed  Google Scholar 

  • Chai G, He H, Sha Y, Zhai G, Zong S (2019) Effect of PM2.5 on daily outpatient visits for respiratory diseases in Lanzhou, China. Sci Total Environ 649:1563–1572

    CAS  PubMed  Google Scholar 

  • Chang J, Tao J, Xu C, Li Y, Li N, Tang Z et al (2019) Pollution characteristics of ambient PM2.5–bound benzo [a] pyrene and its cancer risks in Beijing. Sci Total Environ 654:735–741

    CAS  PubMed  Google Scholar 

  • Charron A, Harrison RM (2005) Fine (PM2.5) and coarse (PM2.5-10) particulate matter on a heavily trafficked London highway: sources and processes. Environ Sci Technol 39(20):7768–7776

    CAS  PubMed  Google Scholar 

  • Chen G, Li S, Zhang Y, Zhang W, Li D, Wei X et al (2017) Effects of ambient PM1 air pollution on daily emergency hospital visits in China: an epidemiological study. Lancet Planet Health 1(6):e221–e229

    PubMed  Google Scholar 

  • Chen Q, Sun H, Song W, Cao F, Tian C, Zhang YL (2020) Size-resolved exposure risk of persistent free radicals (PFRs) in atmospheric aerosols and their potential sources. Atmos Chem Phys Discuss:1–26

    Google Scholar 

  • Cheng M, Wang B, Yang M, Ma J, Ye Z, Xie L et al (2020) microRNAs expression in relation to particulate matter exposure: a systematic review. Environ Pollut 260:113961

    CAS  PubMed  Google Scholar 

  • Chithra VS, SM, S. N. (2018) A review of scientific evidence on indoor air of school building: pollutants, sources, health effects and management. Asian J Atmos Environ 12(2):87–108

    CAS  Google Scholar 

  • Cho KH (2019) Impairment of HDL by pollutants. In: High-density lipoproteins as biomarkers and therapeutic tools. Springer, Singapore, pp 213–285

    Google Scholar 

  • Clougherty JE (2010) A growing role for gender analysis in air pollution epidemiology. Environ Health Perspect 118(2):167–176

    CAS  PubMed  Google Scholar 

  • Cox RA (1974) Particle formation from homogeneous reactions of sulphur dioxide and nitrogen dioxide. Tellus 26(1–2):235–240

    CAS  Google Scholar 

  • CPCB, Central Pollution Control Board (2009) National ambient air quality standards. CPCB, MoEFCC, GoI. http://www.moef.nic.in/sites/default/files/notification/Recved%20national.pdf

  • Das R, Khezri B, Srivastava B, Datta S, Sikdar PK, Webster RD, Wang X (2015) Trace element composition of PM2.5 and PM10 from Kolkata–a heavily polluted Indian metropolis. Atmos Pollut Res 6(5):742–750

    CAS  Google Scholar 

  • De Hartog JJ, Hoek G, Peters A, Timonen KL, Ibald-Mulli A, Brunekreef B et al (2003) Effects of fine and ultrafine particles on cardiorespiratory symptoms in elderly subjects with coronary heart disease: the ULTRA study. Am J Epidemiol 157(7):613–623

    PubMed  Google Scholar 

  • de Paula RJ, Quijano MFC, Ferreiro JD, Gioda A, Jiménez-Vélez B, Monserrat JM, Gioda CR (2020) Aqueous particulate matter (PM2. 5) from Brazil alters antioxidant profile responses and causes oxidative stress. Atmos Pollut Res 11(3):511–519

    Google Scholar 

  • Deng X, Rui W, Zhang F, Ding W (2013) PM 2.5 induces Nrf2-mediated defense mechanisms against oxidative stress by activating PIK3/AKT signaling pathway in human lung alveolar epithelial A549 cells. Cell Biol Toxicol 29(3):143–157

    CAS  PubMed  Google Scholar 

  • Deshmukh DK, Deb MK, Tsai YI, Mkoma SL (2011) Water soluble ions in PM2.5 and PM1 aerosols in Durg city, Chhattisgarh, India. Aerosol Air Qual Res 11(6):696–708

    CAS  Google Scholar 

  • Di Q, Dai L, Wang Y, Zanobetti A, Choirat C, Schwartz JD, Dominici F (2017) Association of short-term exposure to air pollution with mortality in older adults. JAMA 318(24):2446–2456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding X, Wang M, Chu H, Chu M, Na T, Wen Y et al (2014) Global gene expression profiling of human bronchial epithelial cells exposed to airborne fine particulate matter collected from Wuhan, China. Toxicol Lett 228(1):25–33

    CAS  PubMed  Google Scholar 

  • Dockery DW (2001) Epidemiologic evidence of cardiovascular effects of particulate air pollution. Environ Health Perspect 109(suppl 4):483–486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dominici F, Peng RD, Bell ML, Pham L, McDermott A, Zeger SL, Samet JM (2006) Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 295(10):1127–1134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duan J, Bi X, Tan J, Sheng G, Fu J (2005) The differences of the size distribution of polycyclic aromatic hydrocarbons (PAHs) between urban and rural sites of Guangzhou, China. Atmos Res 78(3–4):190–203

    CAS  Google Scholar 

  • ECC (2013) Environment and Climate Change Canada. Canadian Ambient Air Quality Standards. Government of Canada. http://www.ec.gc.ca/default.asp?lang%C2%BCEn&n=56D4043B-1&news=A4B2C28A-2DFB-4BF4-8777-ADF29B4360BD. Accessed 19 Jan 2017

  • ECOREA (2015) Korean ministry of environment.http://eng.me.go.kr/eng/web/index.do?menuId=30. Accessed 22 July 2020

  • Ediagbonya TF (2017) Sources formation transport deposition health and environmental effects and control technology of respirable particles (PM2.5). Facta Universitatis, Series: Working and Living Environmental Protection, pp 105–112

    Google Scholar 

  • EQSJ (2009) Environmental quality standards in Japan—air quality. Ministry of the Government of Japan. http://www.env.go.jp/en/air/aq/aq.html. Accessed 22 July 2020

  • Estol CJ (2020) Air pollution and cardiovascular disease: a proven causality. In: Health of people, health of planet and our responsibility. Springer, Cham, pp 193–204

    Google Scholar 

  • Etchie TO, Sivanesan S, Etchie AT, Adewuyi GO, Krishnamurthi K, George KV, Rao PS (2018) The burden of disease attributable to ambient PM2.5-bound PAHs exposure in Nagpur, India. Chemosphere 204:277–289

    CAS  PubMed  Google Scholar 

  • Evagelopoulos V, Albanis TA, Asvesta A, Zoras S (2010) Polycyclic aromatic hydrocarbons (PAHs) in fine and coarse particles. Global NEST J 12(1):63–70

    Google Scholar 

  • Evans J, van Donkelaar A, Martin RV, Burnett R, Rainham DG, Birkett NJ, Krewski D (2013) Estimates of global mortality attributable to particulate air pollution using satellite imagery. Environ Res 120:33–42

    CAS  PubMed  Google Scholar 

  • Fang Y, Mauzerall DL, Liu J, Fiore AM, Horowitz LW (2013) Impacts of 21st century climate change on global air pollution-related premature mortality. Clim Chang 121(2):239–253

    CAS  Google Scholar 

  • Fann N, Coffman E, Timin B, Kelly JT (2018) The estimated change in the level and distribution of PM2.5-attributable health impacts in the United States: 2005–2014. Environ Res 167:506–514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng S, Gao D, Liao F, Zhou F, Wang X (2016) The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol Environ Saf 128:67–74

    CAS  PubMed  Google Scholar 

  • Feng J, Yu H, Mi K, Su X, Chen Y, Sun JH, Li Q (2018) The pollution characteristics of PM 2.5 and correlation analysis with meteorological parameters in Xinxiang during the Shanghai Cooperation Organization Prime Ministers’ Meeting. Environ Geochem Health 40(3):1067–1076

    CAS  PubMed  Google Scholar 

  • Fiore AM, Naik V, Leibensperger EM (2015) Air quality and climate connections. J Air Waste Manage Assoc 65(6):645–685

    CAS  Google Scholar 

  • Fleisch AF, Gold DR, Rifas-Shiman SL, Koutrakis P, Schwartz JD, Kloog I et al (2014) Air pollution exposure and abnormal glucose tolerance during pregnancy: the project Viva cohort. Environ Health Perspect 122(4):378–383

    PubMed  PubMed Central  Google Scholar 

  • Flores-Pajot MC, Ofner M, Do MT, Lavigne E, Villeneuve PJ (2016) Childhood autism spectrum disorders and exposure to nitrogen dioxide, and particulate matter air pollution: a review and meta-analysis. Environ Res 151:763–776

    CAS  PubMed  Google Scholar 

  • Fröhlich-Nowoisky J, Pickersgill DA, Després VR, Pöschl U (2009) High diversity of fungi in air particulate matter. Proc Natl Acad Sci 106(31):12814–12819

    PubMed  PubMed Central  Google Scholar 

  • Fuks K, Moebus S, Hertel S, Viehmann A, Nonnemacher M, Dragano N et al (2011) Long-term urban particulate air pollution, traffic noise, and arterial blood pressure. Environ Health Perspect 119(12):1706–1711

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galindo N, Yubero E, Nicolás JF, Crespo J, Pastor C, Carratalá A, Santacatalina M (2011) Water-soluble ions measured in fine particulate matter next to cement works. Atmos Environ 45(12):2043–2049

    CAS  Google Scholar 

  • GAMEP (2017) The State of the Environment (2017)—responsibilities and achievements. The General Authority for Meteorology and Environmental Protection, Kingdom of Saudi Arabia. https://www.pme.gov.sa/Ar/DataLists/DocumentLibrary/التقارير20البيئية/The%20State%20of%20the%20Environment%202017.pdf

  • Gangamma S (2014) Characteristics of airborne bacteria in Mumbai urban environment. Sci Total Environ 488:70–74

    PubMed  Google Scholar 

  • Gautam S, Trivedi U (2020) Global implications of bio-aerosol in pandemic. Environ Dev Sustain 22:3861–3865. https://doi.org/10.1007/s10668-020-00704-2

    Article  PubMed  PubMed Central  Google Scholar 

  • GB 3095 (2012) Ambient air quality standards in China. TransportPolicy.net. http://transportpolicy.net/index.php?title¼China:_Air_Quality_Standards. Accessed 22 July 2020

  • Ghahremaninezhad R, Gong W, Galí M, Norman AL, Beagley SR, Akingunola A et al (2019) Dimethyl sulfide and its role in aerosol formation and growth in the Arctic summer–a modelling study. Atmos Chem Phys 19(23)

    Google Scholar 

  • Goldberg MS, Burnett RT, Bailar JC 3rd, Tamblyn R, Ernst P, Flegel K et al (2001) Identification of persons with cardiorespiratory conditions who are at risk of dying from the acute effects of ambient air particles. Environ Health Perspect 109(suppl 4):487–494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grantz DA, Garner JHB, Johnson DW (2003) Ecological effects of particulate matter. Environ Int 29(2–3):213–239

    CAS  PubMed  Google Scholar 

  • Gupta T, Mandariya A (2013) Sources of submicron aerosol during fog-dominated wintertime at Kanpur. Environ Sci Pollut Res 20(8):5615–5629

    CAS  Google Scholar 

  • Hamra GB, Guha N, Cohen A, Laden F, Raaschou-Nielsen O, Samet JM et al (2014) Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ Health Perspect 122(9):906–911

    PubMed  PubMed Central  Google Scholar 

  • Han X, Naeher LP (2006) A review of traffic-related air pollution exposure assessment studies in the developing world. Environ Int 32(1):106–120

    CAS  PubMed  Google Scholar 

  • Han D, Gao S, Fu Q, Cheng J, Chen X, Xu H et al (2018) Do volatile organic compounds (VOCs) emitted from petrochemical industries affect regional PM2.5? Atmos Res 209:123–130

    CAS  Google Scholar 

  • Hargreaves M, Parappukkaran S, Morawska L, Hitchins J, He C, Gilbert D (2003) A pilot investigation into associations between indoor airborne fungal and non-biological particle concentrations in residential houses in Brisbane, Australia. Sci Total Environ 312(1–3):89–101

    CAS  PubMed  Google Scholar 

  • Harrison RM, Smith DJT, Kibble AJ (2004) What is responsible for the carcinogenicity of PM2.5? Occup Environ Med 61(10):799–805

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hassanvand MS, Naddafi K, Faridi S, Nabizadeh R, Sowlat MH, Momeniha F et al (2015) Characterization of PAHs and metals in indoor/outdoor PM10/PM2.5/PM1 in a retirement home and a school dormitory. Sci Total Environ 527:100–110

    PubMed  Google Scholar 

  • He K, Yang F, Ma Y, Zhang Q, Yao X, Chan CK et al (2001) The characteristics of PM2.5 in Beijing, China. Atmos Environ 35(29):4959–4970

    CAS  Google Scholar 

  • Holme JA, Brinchmann BC, Le Ferrec E, Lagadic-Gossmann D, Øvrevik J (2019) Combustion particle-induced changes in calcium homeostasis: a contributing factor to vascular disease? Cardiovasc Toxicol 19(3):198–209

    PubMed  Google Scholar 

  • Huang X, Liu Z, Liu J, Hu B, Wen T, Tang G et al (2017) Chemical characterization and synergetic source apportionment of PM2.5 at multiple sites in the Beijing-Tianjin-Hebei region. China Atmos Chem Phys 17(21):12941–12962

    CAS  Google Scholar 

  • Humbal C, Gautam S, Joshi SK, Rajput MS (2020) Spatial variation of airborne allergenic fungal spores in the ambient PM 2.5—a study in Rajkot City, Western Part of India. In: Measurement, analysis and remediation of environmental pollutants. Springer, Singapore, pp 199–209

    Google Scholar 

  • Ibald-Mulli A, Timonen KL, Peters A, Heinrich J, Wölke G, Lanki T et al (2004) Effects of particulate air pollution on blood pressure and heart rate in subjects with cardiovascular disease: a multicenter approach. Environ Health Perspect 112(3):369–377

    PubMed  PubMed Central  Google Scholar 

  • International Agency for Research on Cancer (IARC) (2020) IARC Monographs on the Identification of Carcinogenic Hazards to Humans (Volumes 1–125). Agents classified by the IARC Monographs

    Google Scholar 

  • IQAir (2019) 2019 WORLD AIR QUALITY REPORT: Region & City PM2.5 ranking. [WWW document]. URL. IQAir. https://www.iqair.com/us/world-most-polluted-cities. Accessed 13 Aug 2020

  • JAAQS (2006) Jordanian Ambient Air Quality Standards (JS-1140/2006)

    Google Scholar 

  • Jackson WJ, Argent RM, Bax NJ, Bui E, Clark GF, Coleman S et al (2016) Australia state of the environment 2016. Australian Government Department of the Environment and Energy, Canberra

    Google Scholar 

  • Jan R, Roy R, Bhor R, Pai K, Satsangi PG (2020) Toxicological screening of airborne particulate matter in atmosphere of Pune: reactive oxygen species and cellular toxicity. Environ Pollut 261:113724

    CAS  PubMed  Google Scholar 

  • Jin X, Su H, Ding G, Sun Z, Li Z (2019) Exposure to ambient fine particles causes abnormal energy metabolism and ATP decrease in lung tissues. Chemosphere 224:29–38

    CAS  PubMed  Google Scholar 

  • Joss MK, Eeftens M, Gintowt E, Kappeler R, Künzli N (2017) Time to harmonize national ambient air quality standards. Int J Public Health 62(4):453–462

    Google Scholar 

  • Kalisa E, Archer S, Nagato E, Bizuru E, Lee K, Tang N et al (2019) Chemical and biological components of urban aerosols in Africa: current status and knowledge gaps. Int J Environ Res Public Health 16(6):941

    CAS  PubMed Central  Google Scholar 

  • Kan H, London SJ, Chen G, Zhang Y, Song G, Zhao N et al (2008) Season, sex, age, and education as modifiers of the effects of outdoor air pollution on daily mortality in Shanghai, China: the Public Health and Air Pollution in Asia (PAPA) study. Environ Health Perspect 116(9):1183–1188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kerminen VM, Paramonov M, Anttila T, Riipinen I, Fountoukis C, Korhonen H et al (2012) Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results. Atmos Chem Phys 12:12037–12059

    CAS  Google Scholar 

  • Kim KJ, Bu JO, Kim WH, Lee YS, Hyeon DR, Kang CH (2013) Pollution characteristics of rainwater at Jeju Island during 2009~ 2010. J Korean Society Atmos Environ 29(6):818–829

    Google Scholar 

  • Kim KN, Lim YH, Bae HJ, Kim M, Jung K, Hong YC (2016) Long-term fine particulate matter exposure and major depressive disorder in a community-based urban cohort. Environ Health Perspect 124(10):1547–1553

    PubMed  PubMed Central  Google Scholar 

  • Kim JH, Oh IH, Park JH, Cheong HK (2018a) Premature deaths attributable to long-term exposure to ambient fine particulate matter in the Republic of Korea. J Korean Med Sci 33(37)

    Google Scholar 

  • Kim KH, Kabir E, Jahan SA (2018b) Airborne bioaerosols and their impact on human health. J Environ Sci 67:23–35

    CAS  Google Scholar 

  • Kim H, Noh J, Noh Y, Oh SS, Koh SB, Kim C (2019) Gender difference in the effects of outdoor air pollution on cognitive function among elderly in Korea. Front Public Health 7:375

    PubMed  PubMed Central  Google Scholar 

  • Kloog I, Zanobetti A, Nordio F, Coull BA, Baccarelli AA, Schwartz J (2015) Effects of airborne fine particles (PM 2.5) on deep vein thrombosis admissions in the northeastern United States. J Thromb Haemost 13(5):768–774

    CAS  PubMed  PubMed Central  Google Scholar 

  • KUEPA (2001). Rules, Regulations, 2001, “Kuwait Al-Youm Appendix 533,” KWT Gov. Press, Law, 210

    Google Scholar 

  • Li PH, Han B, Huo J, Lu B, Ding X, Chen L et al (2012) Characterization, meteorological influences and source identification of carbonaceous aerosols during the autumn-winter period in Tianjin, China. Aerosol Air Qual Res 12(2):283–294

    CAS  Google Scholar 

  • Liang CS, Duan FK, He KB, Ma YL (2016) Review on recent progress in observations, source identifications and countermeasures of PM2.5. Environ Int 86:150–170

    CAS  PubMed  Google Scholar 

  • Lighthart B (2000) Mini-review of the concentration variations found in the alfresco atmospheric bacterial populations. Aerobiologia 16(1):7–16

    Google Scholar 

  • Lippmann M (2014) Toxicological and epidemiological studies of cardiovascular effects of ambient air fine particulate matter (PM2.5) and its chemical components: coherence and public health implications. Crit Rev Toxicol 44(4):299–347

    CAS  PubMed  Google Scholar 

  • Liu F, Lai S, Reinmuth-Selzle K, Scheel JF, Fröhlich-Nowoisky J, Després VR et al (2016) Metaproteomic analysis of atmospheric aerosol samples. Anal Bioanal Chem 408(23):6337–6348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long RW, Smith R, Smith S, Eatough NL, Mangelson NF, Eatough DJ et al (2002) Sources of fine particulate material along the Wasatch Front. Energy Fuel 16(2):282–293

    CAS  Google Scholar 

  • Longhin E, Holme JA, Gutzkow KB, Arlt VM, Kucab JE, Camatini M, Gualtieri M (2013) Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells: characterization of the process and possible mechanisms involved. Part Fibre Toxicol 10(1):1–19

    Google Scholar 

  • Lu H, Zhu L, Chen S (2008) Pollution level, phase distribution and health risk of polycyclic aromatic hydrocarbons in indoor air at public places of Hangzhou, China. Environ Pollut 152(3):569–575

    CAS  PubMed  Google Scholar 

  • Lu MC, Wang P, Cheng TJ, Yang CP, Yan YH (2017) Association of temporal distribution of fine particulate matter with glucose homeostasis during pregnancy in women of Chiayi City, Taiwan. Environ Res 152:81–87

    CAS  PubMed  Google Scholar 

  • Luo C, Zhu X, Yao C, Hou L, Zhang J, Cao J, Wang A (2015) Short-term exposure to particulate air pollution and risk of myocardial infarction: a systematic review and meta-analysis. Environ Sci Pollut R 22(19):14651–14662

    CAS  Google Scholar 

  • Marris H, Deboudt K, Augustin P, Flament P, Blond F, Fiani E et al (2012) Fast changes in chemical composition and size distribution of fine particles during the near-field transport of industrial plumes. Sci Total Environ 427:126–138

    PubMed  Google Scholar 

  • Martins NR, da Graça GC (2018) Impact of PM2.5 in indoor urban environments: a review. Sustain Cities Soc 42:259–275

    Google Scholar 

  • Mauderly JL, Cheng YS, Snipes MB (1990) Particle overload in toxicological studies: friend or foe? J Aerosol Med 3(s1):S-169

    Google Scholar 

  • McCreanor J, Cullinan P, Nieuwenhuijsen MJ, Stewart-Evans J, Malliarou E, Jarup L et al (2007) Respiratory effects of exposure to diesel traffic in persons with asthma. N Engl J Med 357(23):2348–2358

    CAS  PubMed  Google Scholar 

  • Mehta AJ, Zanobetti A, Bind MAC, Kloog I, Koutrakis P, Sparrow D et al (2016) Long-term exposure to ambient fine particulate matter and renal function in older men: the veterans administration normative aging study. Environ Health Perspect 124(9):1353–1360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meng C, Cheng T, Bao F, Gu X, Wang J, Zuo X, Shi S (2020) The impact of meteorological factors on fine particulate pollution in Northeast China. Aerosol Air Qual Res 20:1618–1628

    Google Scholar 

  • MENR (2008) National Environmental (Ambient Air Quality) Regulation, 1994, published in Gazette Extraordinary, No. 850/4 of December, 1994 (amended by the substitution) No. 1562/22, Friday, August 15, 2008. Sri Lanka, Department of Government Printing

    Google Scholar 

  • Miller L, Xu X (2018) Ambient PM2.5 human health effects—findings in China and research directions. Atmos 9(11):424

    CAS  Google Scholar 

  • Miller KA, Siscovick DS, Sheppard L, Shepherd K, Sullivan JH, Anderson GL, Kaufman JD (2007) Long-term exposure to air pollution and incidence of cardiovascular events in women. N Engl J Med 356(5):447–458

    CAS  PubMed  Google Scholar 

  • MoEP, Ministry of Environment Protection (2018) Annual air quality reports (Hebrew). http://www.sviva.gov.il/subjectsEnv/SvivaAir/AirQualityData/NationalAirMonitoing/Pages/AirMoritoringReports.aspx. Accessed 14 Aug 2020

  • Morakinyo OM, Mokgobu MI, Mukhola MS, Hunter RP (2016) Health outcomes of exposure to biological and chemical components of inhalable and respirable particulate matter. Int J Environ Res Public Health 13(6):592

    PubMed Central  Google Scholar 

  • Morris RD (2001) Airborne particulates and hospital admissions for cardiovascular disease: a quantitative review of the evidence. Environ Health Perspect 109(suppl 4):495–500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller-Anneling L, Avol E, Peters JM, Thorne PS (2004) Ambient endotoxin concentrations in PM10 from Southern California. Environ Health Perspect 112(5):583–588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee A, Agrawal M (2017) A global perspective of fine particulate matter pollution and its health effects. In: Reviews of environmental contamination and toxicology, vol 244. Springer, Cham, pp 5–51

    Google Scholar 

  • Murphy DM, Ravishankara AR (2018) Trends and patterns in the contributions to cumulative radiative forcing from different regions of the world. Proc Natl Acad Sci 115(52):13192–13197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Myhre G, Myhre CEL, Samset BH, Storelvmo T (2013) Aerosols and their relation to global climate and climate sensitivity. Nat Educ Knowledge 4(5):7

    Google Scholar 

  • Nava S, Calzolai G, Chiari M, Giannoni M, Giardi F, Becagli S et al (2020) Source apportionment of PM2.5 in Florence (Italy) by PMF analysis of aerosol composition records. Atmos 11(5):484

    CAS  Google Scholar 

  • NEA, National Environment Agency (2016) Air quality and targets. http://www.nea.gov.sg/anti-pollution-radiation-protection/air-pollution-control/air-quality-and-targets

  • Nilsson S, Merritt AS, Bellander T (2011) Endotoxins in urban air in Stockholm, Sweden. Atmos Environ 45(1):266–270

    CAS  Google Scholar 

  • NOM (2005) Norma Official Mexicana, Mexico’s environmental and natural resources ministry, Secretarı’a de Medio Ambiente y Recursos Naturales (SEMARNAT). http://www.salud.gob.mx/unidades/cdi/nom/025ssa193.html. Accessed 22 July 2020

  • OECD, OCDE (2016) Economic consequences of outdoor air pollution. Organisation for Economic Co-operation and Development, Paris

    Google Scholar 

  • Pakistan Gazette (2010) The Gazette of Pakistan/S.R.O. 1062(1)/2010, Islamabad

    Google Scholar 

  • Pandey B (2015) Air pollution around coal mine areas and its impact on soil and vegetation. Ph.D. thesis, Banaras Hindu University, Varanasi (unpublished)

    Google Scholar 

  • Pandey B, Choudhary KK (2019) Air pollution: role in climate change and its impact on crop plants. In: Climate change and agricultural ecosystems. Woodhead Publishing, pp 211–247

    Google Scholar 

  • Pandey B, Agrawal M, Singh S (2014a) Coal mining activities change plant community structure due to air pollution and soil degradation. Ecotoxicology 23(8):1474–1483

    CAS  PubMed  Google Scholar 

  • Pandey B, Agrawal M, Singh S (2014b) Assessment of air pollution around coal mining area: emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and principal component analysis. Atmos Pollut Res 5(1):79–86

    Google Scholar 

  • Pandey B, Agrawal M, Singh S (2016) Ecological risk assessment of soil contamination by trace elements around coal mining area. J Soils Sediments 16(1):159–168

    CAS  Google Scholar 

  • Pandey B, Agrawal M, Singh S (2017) Changes in vegetation community structure around Jharia coalfields, India. In: NexGen technologies for mining and fuel industries. Allied Publishers, pp 813–822

    Google Scholar 

  • Pandey B, Gautam M, Agrawal M (2018) Greenhouse gas emissions from coal mining activities and their possible mitigation strategies. In: Environmental carbon footprints. Butterworth-Heinemann, pp 259–294

    Google Scholar 

  • Pandey B, Mukherjee A, Agrawal M, Singh S (2019) Assessment of seasonal and site-specific variations in soil physical, chemical and biological properties around opencast coal mines. Pedosphere 29(5):642–655

    Google Scholar 

  • Park M, Joo HS, Lee K, Jang M, Kim SD, Kim I et al (2018) Differential toxicities of fine particulate matters from various sources. Sci Rep 8(1):1–11

    Google Scholar 

  • Parvez F, Lamancusa C, Wagstrom K (2017) Primary and secondary particulate matter intake fraction from different height emission sources. Atmos Environ 165:1–11

    CAS  Google Scholar 

  • Pascal M, Falq G, Wagner V, Chatignoux E, Corso M, Blanchard M et al (2014) Short-term impacts of particulate matter (PM10, PM10–2.5, PM2.5) on mortality in nine French cities. Atmos Environ 95:175–184

    CAS  Google Scholar 

  • PCD (2010) Pollution Control Department. Ambient Air Standards. Ministry of Natural Resources and Environment Thailand. http://www.pcd.go.th/info_serv/en_reg_std_airsnd01.html. Accessed 22 July 2020

  • Pio C, Alves C, Nunes T, Cerqueira M, Lucarelli F, Nava S et al (2020) Source apportionment of PM2.5 and PM10 by Ionic and Mass Balance (IMB) in a traffic-influenced urban atmosphere, in Portugal. Atmos Environ 223:117217

    CAS  Google Scholar 

  • Polk HS (2019) State of global air 2019: a special report on global exposure to air pollution and its disease burden. Health Effects Institute, Boston, MA

    Google Scholar 

  • Quinn PK, Bates TS (2005) Regional aerosol properties: comparisons of boundary layer measurements from ACE 1, ACE 2, Aerosols99, INDOEX, ACE Asia, TARFOX, and NEAQS. J Geophys Res Atmos 110(D14)

    Google Scholar 

  • Raes F, Van Dingenen R, Vignati E, Wilson J, Putaud JP, Seinfeld JH, Adams P (2000) Formation and cycling of aerosols in the global troposphere. Atmos Environ 34(25):4215–4240

    CAS  Google Scholar 

  • Ram K, Sarin MM, Hegde P (2008) Atmospheric abundances of primary and secondary carbonaceous species at two high-altitude sites in India: sources and temporal variability. Atmos Environ 42(28):6785–6796

    CAS  Google Scholar 

  • Ramli NA, Yusof NFFM, Shith S, Suroto A (2020) Chemical and Biological compositions associated with ambient respirable particulate matter: a review. Water Air Soil Pollut 231(3):1–14

    Google Scholar 

  • Rana MM, Biswas SK (2018) Ambient air quality in Bangladesh, clean air and sustainable environment project Department of Environment Ministry of Environment. Forest and Climate Change Government of the People’s Republic of Bangladesh

    Google Scholar 

  • Rasheed A, Aneja VP, Aiyyer A, Rafique U (2015) Measurement and analysis of fine particulate matter (PM2.5) in urban areas of Pakistan. Aerosol Air Qual Res 15(2):426–439

    CAS  Google Scholar 

  • Rattanavaraha W, Chu K, Budisulistiorini SH, Riva M, Lin YH, Edgerton ES et al (2016) Assessing the impact of anthropogenic pollution on isoprene-derived secondary organic aerosol formation in PM2.5 collected from the Birmingham, Alabama, ground site during the 2013 Southern Oxidant and Aerosol Study. Atmos Chem Phys 16(8):4897–4914

    CAS  Google Scholar 

  • Richard, F., Creusot, T., Catoire, S., Egles, C., & Ficheux, H. (2019). Mechanisms of pollutant-induced toxicity in skin and detoxification: anti-pollution strategies and perspectives for cosmetic products. In Annales Pharmaceutiques Françaises (Vol. 77(6), pp. 446–459). Elsevier Masson

    Google Scholar 

  • Rinsoz T, Duquenne P, Greff-Mirguet G, Oppliger A (2008) Application of real-time PCR for total airborne bacterial assessment: comparison with epifluorescence microscopy and culture-dependent methods. Atmos Environ 42(28):6767–6774

    CAS  Google Scholar 

  • Sahu RK, Pervez S, Chow JC, Watson JG, Tiwari S, Panicker AS et al (2018) Temporal and spatial variations of PM 2.5 organic and elemental carbon in Central India. Environ Geochem Health 40(5):2205–2222

    CAS  PubMed  Google Scholar 

  • Salam A, Assaduzzaman M, Hossain MN, Siddiki ANA (2015) Water soluble ionic species in the atmospheric fine particulate matters (PM2.5) in a Southeast Asian mega city (Dhaka, Bangladesh). Open J Air Pollut 4(03):99

    CAS  Google Scholar 

  • Samara C, Voutsa D (2005) Size distribution of airborne particulate matter and associated heavy metals in the roadside environment. Chemosphere 59(8):1197–1206

    CAS  PubMed  Google Scholar 

  • Saxena P, Sonwani S, Kulshrestha UC (2017) Impact of tropospheric ozone and particulate matter on plant health. Sustaining future food security. Nova Publisher, New York, pp 19–60

    Google Scholar 

  • Saxena P, Sonwani S (2019a) Primary criteria air pollutants: environmental health effects. In: Criteria air pollutants and their impact on environmental health. Springer, Singapore, pp 49–82

    Google Scholar 

  • Saxena P, Sonwani S (2019b) Criteria air pollutants: chemistry, sources and sinks. In: Criteria air pollutants and their impact on environmental health. Springer, Singapore, pp 7–48

    Google Scholar 

  • Saxena P, Sonwani S, Srivastava A, Jain M, Srivastava A, Bharti A, Rangra D, Mongia N, Tejan S, Bhardwaj S (2021) Impact of crop residue burning in Haryana on the air quality of Delhi, India. Heliyon 7(5):e06973

    PubMed  PubMed Central  Google Scholar 

  • Schikowski T, Schaffner E, Meier F, Phuleria HC, Vierkötter A, Schindler C et al (2013) Improved air quality and attenuated lung function decline: modification by obesity in the SAPALDIA cohort. Environ Health Perspect 121(9):1034–1039

    PubMed  PubMed Central  Google Scholar 

  • Schwartz J, Laden F, Zanobetti A (2002) The concentration-response relation between PM (2.5) and daily deaths. Environ Health Perspect 110(10):1025–1029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seinfeld JH, Pandis SN (2016) Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons

    Google Scholar 

  • Shaeri AM, Rahmati A (2012) Human’s environmental laws, regulations, criteria and standards. Hak Publishing Co., Department of Environment (DOE), Tehran, Iran

    Google Scholar 

  • Sharma SK, Mandal TK, Sharma A, Jain S (2018) Carbonaceous species of PM 2.5 in megacity Delhi, India during 2012–2016. Bull Environ Contam Toxicol 100(5):695–701

    CAS  PubMed  Google Scholar 

  • Singh S, Tiwari S, Gond DP, Dumka UC, Bisht DS, Tiwari S et al (2015) Intra-seasonal variability of black carbon aerosols over a coal field area at Dhanbad, India. Atmos Res 161:25–35

    Google Scholar 

  • Singh S, Tiwari S, Dumka UC, Kumar R, Singh PK (2017a) Source region and sector contributions of atmospheric soot particle in a coalfield region of Dhanbad, eastern part of India. Atmos Res 197:415–424

    CAS  Google Scholar 

  • Singh N, Murari V, Kumar M, Barman SC, Banerjee T (2017b) Fine particulates over South Asia: review and meta-analysis of PM2.5 source apportionment through receptor model. Environ Pollut 223:121–136

    CAS  PubMed  Google Scholar 

  • Singh S, Tiwari S, Hopke PK, Zhou C, Turner JR, Panicker AS, Singh PK (2018) Ambient black carbon particulate matter in the coal region of Dhanbad, India. Sci Total Environ 615:955–963

    CAS  PubMed  Google Scholar 

  • Smets W, Moretti S, Denys S, Lebeer S (2016) Airborne bacteria in the atmosphere: presence, purpose, and potential. Atmos Environ 139:214–221

    CAS  Google Scholar 

  • Snider G, Weagle CL, Murdymootoo KK, Ring A, Ritchie Y, Stone E, et al (2016) Variation in global chemical composition of PM2.5: emerging results from SPARTAN

    Google Scholar 

  • Song Y, Huang B, He Q, Chen B, Wei J, Mahmood R (2019) Dynamic assessment of PM2.5 exposure and health risk using remote sensing and geo-spatial big data. Environ Pollut 253:288–296

    CAS  PubMed  Google Scholar 

  • Sonwani S, Kulshreshtha U (2016) Particulate matter levels and it’s associated health risks in East Delhi. In: Proceedings of Indian aerosol science and technology association conference on aerosol and climate change: insight and challenges. IASTA Bull, vol 22, no 1–2, pp 269–272

    Google Scholar 

  • Sonwani S, Maurya V (2018) Impact of air pollution on the environment and economy. In: Air pollution: sources, impacts and controls. CABI, Oxford, p 113

    Google Scholar 

  • Sonwani S, Saxena P, Kulshrestha U (2016) Role of global warming and plant signaling in BVOC emissions. In: Plant responses to air pollution. Springer, Singapore, pp 45–57

    Google Scholar 

  • Sonwani S, Kulshrestha UC (2019) PM10 carbonaceous aerosols and their real-time wet scavenging during monsoon and non-monsoon seasons at Delhi, India. J Atmos Chem 76(3):171–200

    CAS  Google Scholar 

  • Sonwani S, Saxena P (2021) Water-insoluble carbonaceous components in rainwater over an urban background location in northern India during pre-monsoon and monsoon seasons. Environ Sci Pollut Res 28(38):53058–53073

    CAS  Google Scholar 

  • Sonwani S, Yadav A, Saxena P (2021a) Atmospheric brown carbon: a global emerging concern for climate and environmental health. In: Management of contaminants of emerging concern (CEC) in environment, vol 1, pp 225–247

    Google Scholar 

  • Sonwani S, Madaan S, Arora J, Rangra D, Mongia N, Vats T, Saxena P (2021b) Inhalation exposure to atmospheric nanoparticles and its associated impacts on human health: a review. Front Sustain Cities 3:690444

    Google Scholar 

  • Sonwani S, Saxena P, Shukla A (2021c) Carbonaceous aerosol characterization and their relationship with meteorological parameters during summer monsoon and winter monsoon at an industrial region in Delhi, India. Earth Space Sci 8(4):e2020EA001303

    Google Scholar 

  • Sonwani S, Saxena P, Khillare PS (2022) Profile of atmospheric particulate PAHs near busy roadway in tropical megacity, India. Inhal Toxicol 34(1–2):39–50

    CAS  PubMed  Google Scholar 

  • Sullivan J, Ishikawa N, Sheppard L, Siscovick D, Checkoway H, Kaufman J (2003) Exposure to ambient fine particulate matter and primary cardiac arrest among persons with and without clinically recognized heart disease. Am J Epidemiol 157(6):501–509

    CAS  PubMed  Google Scholar 

  • Sun X, Luo X, Zhao C, Ng RWC, Lim CED, Zhang B, Liu T (2015) The association between fine particulate matter exposure during pregnancy and preterm birth: a meta-analysis. BMC Pregnancy Childbirth 15(1):1–12

    Google Scholar 

  • Talbott EO, Arena VC, Rager JR, Clougherty JE, Michanowicz DR, Sharma RK, Stacy SL (2015) Fine particulate matter and the risk of autism spectrum disorder. Environ Res 140:414–420

    CAS  PubMed  Google Scholar 

  • Tang K, Huang Z, Huang J, Maki T, Zhang S, Shimizu A et al (2018) Characterization of atmospheric bioaerosols along the transport pathway of Asian dust during the Dust-Bioaerosol 2016 Campaign. Atmos Chem Phys 18(10):7131

    CAS  Google Scholar 

  • Tao Z, Xu W, Zhu C, Zhang S, Shi Z, Song W et al (2019) Effects of ammonia on intestinal microflora and productive performance of laying ducks. Poult Sci 98(5):1947–1959

    CAS  PubMed  Google Scholar 

  • Telloli C, Chicca M, Leis M, Vaccaro C (2016) Fungal spores and pollen in particulate matter collected during agricultural activities in the Po Valley (Italy). J Environ Sci 46:229–240

    Google Scholar 

  • Tian Y, Liu H, Liang T, Xiang X, Li M, Juan J et al (2019) Fine particulate air pollution and adult hospital admissions in 200 Chinese cities: a time-series analysis. Int J Epidemiol 48(4):1142–1151

    PubMed  Google Scholar 

  • Urbano R, Palenik B, Gaston CJ, Prather KA (2011) Detection and phylogenetic analysis of coastal bioaerosols using culture dependent and independent techniques. Biogeosciences 8(2):301

    CAS  Google Scholar 

  • US EPA (2019) Health and Environmental Effects of Particulate Matter (PM). Retrieved on July 09, 2020

    Google Scholar 

  • van Berlo D, Hullmann M, Schins RP (2012) Toxicology of ambient particulate matter. In: Molecular, clinical and environmental toxicology. Spriger, pp 165–217

    Google Scholar 

  • Van Leuken JPG, Swart AN, Havelaar AH, Van Pul A, Van der Hoek W, Heederik D (2016) Atmospheric dispersion modelling of bioaerosols that are pathogenic to humans and livestock—a review to inform risk assessment studies. Microbial Risk Analysis 1:19–39

    PubMed  Google Scholar 

  • Villar-Vidal M, Lertxundi A, De Dicastillo MML, Alvarez JI, Santa Marina L, Ayerdi M et al (2014) Air Polycyclic Aromatic Hydrocarbons (PAHs) associated with PM2.5 in a North Cantabric coast urban environment. Chemosphere 99:233–238

    CAS  PubMed  Google Scholar 

  • Wang G, Zhen L, Lü P, Jiang R, Song W (2013) Effects of ozone and fine particulate matter (PM2.5) on rat cardiac autonomic nervous system and systemic inflammation. J Hygiene Res 42(4):554–560

    CAS  Google Scholar 

  • Wang C, Tu Y, Yu Z, Lu R (2015) PM2.5 and cardiovascular diseases in the elderly: an overview. Int J Environ Res Public Health 12(7):8187–8197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N, Hou GG, Kweon M, Lee B (2016) Effects of particle size on the properties of whole-grain soft wheat flour and its cracker baking performance. J Cereal Sci 69:187–193

    Google Scholar 

  • Wang J, Li S, Li H, Qian X, Li X, Liu X et al (2017) Trace metals and magnetic particles in PM 2.5: magnetic identification and its implications. Sci Rep 7(1):1–11

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Shi Z, Shen F, Sun J, Huang L, Zhang H et al (2019) Associations of daily mortality with short-term exposure to PM2.5 and its constituents in Shanghai, China. Chemosphere 233:879–887

    CAS  PubMed  Google Scholar 

  • Wang B, Eum KD, Kazemiparkouhi F, Li C, Manjourides J, Pavlu V, Suh H (2020) The impact of long-term PM 2.5 exposure on specific causes of death: exposure-response curves and effect modification among 53 million US Medicare beneficiaries. Environ Health 19(1):1–12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei T, Tang M (2018) Biological effects of airborne fine particulate matter (PM2.5) exposure on pulmonary immune system. Environ Toxicol Pharmacol 60:195–201

    CAS  PubMed  Google Scholar 

  • Wei M, Liu H, Chen J, Xu C, Li J, Xu P, Sun Z (2020) Effects of aerosol pollution on PM2.5-associated bacteria in typical inland and coastal cities of northern China during the winter heating season. Environ Pollut 262:114188

    CAS  PubMed  Google Scholar 

  • Wen W, Ma X, Guo C, Zhao X, Xu J, Liu L et al (2020) The Aerosol-Radiation Interaction Effects of Different Particulate Matter Components during Heavy Pollution Periods in China. Atmos 11(3):254

    CAS  Google Scholar 

  • WHO (2006) Regional office for Europe. Air quality guidelines. Global update 2005

    Google Scholar 

  • Wilker EH, Mittleman MA, Coull BA, Gryparis A, Bots ML, Schwartz J, Sparrow D (2013) Long-term exposure to black carbon and carotid intima-media thickness: the normative aging study. Environ Health Perspect 121(9):1061–1067

    PubMed  PubMed Central  Google Scholar 

  • Wolf J, O’Neill NR, Rogers CA, Muilenberg ML, Ziska LH (2010) Elevated atmospheric carbon dioxide concentrations amplify Alternaria alternata sporulation and total antigen production. Environ Health Perspect 118(9):1223–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2006) Air quality guidelines: global update 2005: particulate matter, ozone, nitrogen dioxide, and sulfur dioxide. World Health Organization

    Google Scholar 

  • Wu J, Xu C, Wang Q, Cheng W (2016) Potential sources and formations of the PM2.5 pollution in urban Hangzhou. Atmos 7(8):100

    Google Scholar 

  • Xu MM, Jia YP, Li GX, Liu LQ, Mo YZ, Jin XB, Pan XC (2013) Relationship between ambient fine particles and ventricular repolarization changes and heart rate variability of elderly people with heart disease in Beijing, China. Biomed Environ Sci 26(8):629–637

    PubMed  Google Scholar 

  • Xu F, Shi X, Qiu X, Jiang X, Fang Y, Wang J et al (2020) Investigation of the chemical components of ambient fine particulate matter (PM2.5) associated with in vitro cellular responses to oxidative stress and inflammation. Environ Int 136:105475

    CAS  PubMed  Google Scholar 

  • Yan D, Zhang T, Su J, Zhao LL, Wang H, Fang XM et al (2016) Diversity and composition of airborne fungal community associated with particulate matters in Beijing during haze and non-haze days. Front Microbiol 7:487

    PubMed  PubMed Central  Google Scholar 

  • Yang H, Yu JZ, Ho SSH, Xu J, Wu WS, Wan CH et al (2005) The chemical composition of inorganic and carbonaceous materials in PM2.5 in Nanjing, China. Atmos Environ 39(20):3735–3749

    CAS  Google Scholar 

  • Yang F, Huang L, Duan F, Zhang W, He K, Ma Y et al (2011) Carbonaceous species in PM 2.5 at a pair of rural/urban sites in Beijing, 2005-2008. Atmos Chem Phys 11(15)

    Google Scholar 

  • Yorifuji T, Kashima S, Doi H (2016) Acute exposure to fine and coarse particulate matter and infant mortality in Tokyo, Japan (2002–2013). Sci Total Environ 551:66–72

    PubMed  Google Scholar 

  • Zhang Y, Tao S, Shen H, Ma J (2009) Inhalation exposure to ambient polycyclic aromatic hydrocarbons and lung cancer risk of Chinese population. Proc Natl Acad Sci 106(50):21063–21067

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Engling G, Chan CY, Zhang YN, Zhang ZS, Lin M et al (2010) Contribution of fungal spores to particulate matter in a tropical rainforest. Environ Res Lett 5(2):024010

    Google Scholar 

  • Zhang YJ, Tang LL, Wang Z, Yu HX, Sun YL, Liu D et al (2015) Insights into characteristics, sources, and evolution of submicron aerosols during harvest seasons in the Yangtze River delta region, China. Atmos Chem Phys 15(3):1331–1349

    Google Scholar 

  • Zhang Y, Fang J, Mao F, Ding Z, Xiang Q, Wang W (2020) Age-and season-specific effects of ambient particles (PM1, PM2.5, and PM10) on daily emergency department visits among two Chinese metropolitan populations. Chemosphere 246:125723

    CAS  PubMed  Google Scholar 

  • Zhou Y, Zhang D, Zheng L, Shi R, Chen M (2018) The variation characteristics of PM2.5 in Shanghai and its correlation with meteorological factors. In: Remote sensing and modeling of ecosystems for sustainability XV, vol 10767. International Society for Optics and Photonics, p 107670P

    Google Scholar 

  • Zhu X, Liu Y, Chen Y, Yao C, Che Z, Cao J (2015) Maternal exposure to fine particulate matter (PM2.5) and pregnancy outcomes: a meta-analysis. Environ Sci Pollut R 22(5):3383–3396

    CAS  Google Scholar 

Download references

Acknowledgement

The authors are thankful to Director, CSIR-Central Institute of Mining and Fuel Research, Dhanbad, for providing essential facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhanu Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, B., Ghosh, A. (2022). Toxicological Implications of Fine Particulates: Sources, Chemical Composition, and Possible Underlying Mechanism. In: Sonwani, S., Shukla, A. (eds) Airborne Particulate Matter. Springer, Singapore. https://doi.org/10.1007/978-981-16-5387-2_7

Download citation

Publish with us

Policies and ethics