Skip to main content

3D Object Classification Using HOG3D

  • Conference paper
  • First Online:
Proceedings of International Conference on Data Science and Applications

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 287))

  • 649 Accesses

Abstract

A crucial component of artificial intelligence and image processing is 3D object classification. It helps to achieve significant and complex changes in performance through feature representation and processing of the images. Feature extraction plays a significant step in machine learning as it facilitates the feeding of insightful and non-redundant values to the machine learning algorithms. In this paper, we will present a framework to construct a 3D object classification system using several machine learning classifiers, and features were extracted using a local object structure descriptor called the 3D Voxel histogram of oriented gradient. We say that incorporating 3D classification tasks is a powerful strategy. This means enhancing performance, precision, and efficiency of learning. The system contributed to increase efficiency and produced impressive results of 88 and 89% accuracy using Support vector machine and extreme Gradient Boosting, respectively. The results will be discussed and evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, D.-Y., Tian, X.-P., Shen, Y.-T., Ouhyoung, M.: On visual similarity based 3d model retrieval. In: Computer Graphics Forum, vol. 22, pp. 223–232. Wiley Online Library (2003)

    Google Scholar 

  2. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016)

    Google Scholar 

  3. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) (2005)

    Google Scholar 

  4. Dupre, R., Argyriou, V., Greenhill, D., Tzimiropoulos, G.: A 3d scene analysis framework and descriptors for risk evaluation. In: 2015 International Conference on 3D Vision, pp. 100–108. IEEE (2015)

    Google Scholar 

  5. A. S. Gezawa, Y. Zhang, Q. Wang, and L. Yunqi. A review on deep learning approaches for 3d data representations in retrieval and classifications. IEEE Access, 8:57566–57593, 2020

    Article  Google Scholar 

  6. Guo, Y., Sohel, F., Bennamoun, M., Lu, M., Wan, J.: Rotational projection statistics for 3d local surface description and object recognition. International journal of computer vision 105(1), 63–86 (2013)

    Article  MathSciNet  Google Scholar 

  7. Han, J., Shao, L., Xu, D., Shotton, J.: Enhanced computer vision with microsoft kinect sensor: A review. IEEE transactions on cybernetics 43(5), 1318–1334 (2013)

    Article  Google Scholar 

  8. Hegde, V., Zadeh, R.: Fusionnet: 3d object classification using multiple data representations (2016). arXiv preprint arXiv:1607.05695

  9. L. Hoang, S.-H. Lee, and K.-R. Kwon. A 3d shape recognition method using hybrid deep learning network cnn-svm. Electronics, 9(4):649, 2020

    Article  Google Scholar 

  10. Jan. A.: Deep learning based facial expression recognition and its applications. Ph.D. thesis, Brunel University London (2017)

    Google Scholar 

  11. Johnson, A.E., Hebert, M.: Surface matching for object recognition in complex three-dimensional scenes. Image and Vision Computing 16(9–10), 635–651 (1998)

    Article  Google Scholar 

  12. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3 d shape descriptors. Symposium on Geometry Processing, vol. 6, pp. 156–164 (2003)

    Google Scholar 

  13. Klaser, A., Marszałek, M., Schmid, C.: A spatio-temporal descriptor based on 3d-gradients. In: BMVC 2008-19th British Machine Vision Conference, pp. 275–1. British Machine Vision Association (2008)

    Google Scholar 

  14. Knopp, J., Prasad, M., Willems, G., Timofte, R., Van Gool, L.: Hough transform and 3d surf for robust three dimensional classification. In: European Conference on Computer Vision, pp. 589–602. Springer, Berlin (2010)

    Google Scholar 

  15. Li, N., Cheng, X., Zhang, S., Wu, Z.: Realistic human action recognition by fast hog3d and self-organization feature map. Machine vision and applications 25(7), 1793–1812 (2014)

    Article  Google Scholar 

  16. Lo, T.-W.R., Siebert, J.P.: Local feature extraction and matching on range images: 2.5 d sift. Comput. Vis. Image Underst. 113(12), 1235–1250 (2009)

    Google Scholar 

  17. Nguyen, T.Q., Kim, S.H., Na, I.S.: Fast pedestrian detection using histogram of oriented gradients and principal components analysis. International Journal of Contents 9(3), 1–8 (2013)

    Article  Google Scholar 

  18. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Transactions on Graphics (TOG) 21(4), 807–832 (2002)

    Article  MathSciNet  Google Scholar 

  19. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (fpfh) for 3d registration. In: 2009 IEEE international conference on robotics and automation, pp. 3212–3217. IEEE (2009)

    Google Scholar 

  20. Rusu, R.B., Bradski, G., Thibaux, R., Hsu, J.: Fast 3d recognition and pose using the viewpoint feature histogram. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2155–2162. IEEE (2010)

    Google Scholar 

  21. Shi, B., Bai, S., Zhou, Z., Bai, X.: Deeppano: Deep panoramic representation for 3-d shape recognition. IEEE Signal Process. Lett. 22(12), 2339–2343 (2015)

    Article  Google Scholar 

  22. Shi, B.-Q., Liang, J., Liu, Q.: Adaptive simplification of point cloud using k-means clustering. Comput. Aided Des. 43(8), 910–922 (2011)

    Article  Google Scholar 

  23. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Computer Graphics Forum, vol. 28, pp. 1383–1392. Wiley Online Library (2009)

    Google Scholar 

  24. Vapnik, V., Vapnik, V.: Statistical Learning Theory, vol. 1, pp. 624. Wiley, New York (1998)

    Google Scholar 

  25. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fouzia Adjailia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adjailia, F., Rasamoelina, A.D., Sincak, P. (2022). 3D Object Classification Using HOG3D. In: Saraswat, M., Roy, S., Chowdhury, C., Gandomi, A.H. (eds) Proceedings of International Conference on Data Science and Applications. Lecture Notes in Networks and Systems, vol 287. Springer, Singapore. https://doi.org/10.1007/978-981-16-5348-3_36

Download citation

Publish with us

Policies and ethics