Skip to main content
  • 538 Accesses

Abstract

Problems of deep excavation, either stability analysis, stress analysis, or deformation analysis, entail the distribution of earth pressures. Though introductory books on soil mechanics or foundation engineering have discussed quite a few earth pressure theories along with many examples, systematic research is deficient. Some important points may not be sufficiently emphasized. In actual analyses, a wrong choice of earth pressure theory may lead to an uneconomical or unsafe design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rankine, W. M. J. (1857). On stability on loose earth. Philosophic Transactions of Royal Society.

    Google Scholar 

  2. Coulomb, C. A. (1776). Essaisurune application des regles de maximis et minimis a quelques problemes de statique. Mem. Roy. des Sciences.

    Google Scholar 

  3. Peck, R. B. (1969). Deep excavation and tunneling in soft ground. In: Proceedings of the 7th International Conference on soil Mechanics and Foundation Engineering (pp. 225–290). Mexico City.

    Google Scholar 

  4. Terzaghi, K., & Peck, R. B. (1967). Soil Mechanics in engineering practice. John Wiley & Sons.

    Google Scholar 

  5. Ou, C. Y. (2006). Deep excavation: Theory and practice. Taylor and Francis.

    Google Scholar 

  6. Chang, J. D., & Wong, K. S. (1996). Apparent pressure diagram for braced excavations in soft clay with diaphragm wall. In: Proceedings of International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground (pp. 87–92). A.A. Balkema.

    Google Scholar 

  7. Hashash, Y. M. A., & Whittle, A. J. (2002). Mechanism of load transfer and arching for braced excavation in clay. Journal of Geotechnical and Geoenvironmental Engineering, 128, 198–197.

    Article  Google Scholar 

  8. Wong, I. H., Poh, T. Y., & Chuah, H. L. (1997). Performance of excavations for depressed expressway in Singapore. Journal of Geotechnical and Geoenvironmental Engineering, 123, 617–625.

    Article  Google Scholar 

  9. Twine, D., & Roscoe, H. (1999). Temporary propping of deep excavations-guidance on design. CIRIA C517, CIRIA London.

    Google Scholar 

  10. Finno, R. J., Blackburn, J. T., & Roboski, J. F. (2007). Three-dimensional effects for supported excavations in clay. Journal of Geotechnical and Geoenvironmental Engineering, 133, 30–36.

    Article  Google Scholar 

  11. Bryson, L. S., & Zapata-Medina, D. G. (2012). Method for estimating system stiffness for excavation support walls. Journal of Geotechnical and Geoenvironmental Engineering, 138, 1104–1115.

    Article  Google Scholar 

  12. Long, M. (2001). Database for retaining wall and ground movements due to deep excavations. Journal of Geotechnical and Geoenvironmental Engineering, 127, 203–224.

    Google Scholar 

  13. Moormann, C. (2004). Analysis of wall and ground movements due to deep excavations in soft soil based on a new worldwide database. Soils and Foundations, 44, 87–98.

    Google Scholar 

  14. Clough, G. W., Smith, E. M., & Sweeney, B. P. (1989). Movement control of excavation support systems by iterative design. In: Proceedings of Foundation Engineering Congress on Current Principles and Practices (pp. 869–884). New York.

    Google Scholar 

  15. Brinkgreve, L., Swolfs, W., & Engin, E. (2017). Plaxis manual. PLAXIS BV.

    Google Scholar 

  16. Hsieh, P. G., & Ou, C. Y. (1998). Shape of ground surface settlement profiles caused by excavation. Canadian Geotechnical Journal, 35, 1004–1017.

    Article  Google Scholar 

  17. Finno, R. J., Bryson, S., & Calvello, M. (2002). Performance of a stiff support system in soft clay. Journal of Geotechnical and Geoenvironmental Engineering, 128, 660–671.

    Article  Google Scholar 

  18. Ou, C. Y., Liao, J. T., & Lin, H. D. (1998). Performance of diaphragm wall constructed using Top-Down method. Journal of Geotechnical and Geoenvironmental Engineering, 124, 798–808.

    Article  Google Scholar 

  19. Ng, C. W. W. (1992). An evaluation of soil - structure interaction associated with a multi - propped excavation. Ph D Thesis University of Bristol 13, 31–35.

    Google Scholar 

  20. Yau, P. K. F., Sum, A. H. L. (2010). An analytical review of excavation and lateral support, case history in Hong Kong. In: Proceedings of the 30th annual seminar geotechnical division. The Hong Kong Institution of Engineers (pp. 47–53). Hong Kong.

    Google Scholar 

  21. Goh, A. T. C., Zhang, F., Zhang, W. G., & Chew, O. Y. S. (2017). Assessment of strut forces for braced excavation in clays from numerical analysis and field measurements. Computers & Geotechnics, 86, 141–149.

    Article  Google Scholar 

  22. Cham, W. M., Goh, K. H. (2011). Observed apparent pressure diagrams from actual strut monitoring of excavations in Circle Line project, In: Proceedings of Underground Singapore (pp. 289–297). Singapore,.

    Google Scholar 

  23. Li, W. (2001). Braced excavation in old alluvium in Singapore. Nanyang Technological University.

    Google Scholar 

  24. Lau, C. S., Chiu, S. L., Lo, K. L., Chu, K. K. N. (2010). Ground response in deep excavation in soft soil in Shanghai, In: Proceedings of the 30th annual seminar geotechnical division. The Hong Kong Institution of Engineers (pp. 149–161). Hong Kong.

    Google Scholar 

  25. Jadhav, A. S. (2003). Field measurements of strut loads in LTA contract C907. In: Proceedings of underground singapore (pp. 267–276). Singapore.

    Google Scholar 

  26. Juran, I., & Elias, V. (1987). Soil nailed retaining structures: Analysis of case histories. Soil Improvement.

    Google Scholar 

  27. Hsu, S. C., Huang, Y. P., & Cheng, T. M. (2014). Earth Pressure Distribution for Deep Excavations in Gravel Formations.

    Google Scholar 

  28. Hsiung, B. C. B., Yang, K. H., Aila, W., & Hung, C. (2016). Three-dimensional effects of a deep excavation on wall deflections in loose to medium dense sands. Computers and Geotechnics, 80, 138–151.

    Article  Google Scholar 

  29. Chee, B. J. S. (2014). Analysis of strut forces for braced excavations in sand. CEE Student Reports (FYP/IA/PA/PI), Nanyang Technological University.

    Google Scholar 

  30. Nakai, T., Kawano, H., Murat, K., Banno, M., & Hashimoto, T. (1999). Model tests and numerical simulation of braced excavation in sandy ground: influences of construction history, wall friction, wall stiffness, strut position and strut stiffness. Soils and Foundations, 39, 1–12.

    Article  Google Scholar 

  31. Zhang*, W., Hou, Z., Anthony T.C. Goh, & Zhang, R. (2019). Estimation of strut forces for braced excavation in granular soils from numerical analysis and case histories. Comput Geotech 106, 286–295.

    Google Scholar 

  32. Halim, D. (2008). Effect of excavation on performance of adjacent buildings. Nanyang Technological University.

    Google Scholar 

  33. Bahrami, M., Khodakarami, M. I., & Haddad, A. (2018). 3D numerical investigation of the effect of wall penetration depth on excavations behavior in sand. Computers and Geotechnics, 98, 82–92.

    Article  Google Scholar 

  34. Boone, S. J., & Westland, J. (2004). Design, construction, and performance of a deep braced excavation. In: International conference on Case Histories in Geotechnical Engineering 29.

    Google Scholar 

  35. Zhang, R. H., Goh, A. T. C., Li, Y. Q., Hong, L., & Zhang, W. G. (2021). Assessment of apparent earth pressure for braced excavations in anisotropic clay. Acta Geotechnica. https://doi.org/10.1007/s11440-020-01129-x

    Article  Google Scholar 

  36. Goldberg, D. T., Jaworski, W. E., & Gordon, D. (1976). Lateral support systems and underground. volumn II. Design Fundamentals Construction.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wengang Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, W., Liu, H. (2022). Lateral Earth Pressure and Strut Forces. In: Design of Deep Braced Excavation and Earth Retaining Systems Under Complex Built Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-5320-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5320-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5319-3

  • Online ISBN: 978-981-16-5320-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics