Skip to main content

A Multi-Domain VNE Algorithm Based on Load Balancing in the IoT Networks

  • Chapter
  • First Online:
QoS-Aware Virtual Network Embedding

Abstract

The coordinated development of big data, Internet of Things (IoT), cloud computing, and other technologies has led to an exponential growth in Internet business. However, the traditional Internet architecture gradually shows a rigid phenomenon due to the binding of the network structure and the hardware. In a high-traffic environment, it has been insufficient to meet people’s increasing service quality requirements. Network virtualization (NV) is considered to be an effective method to solve the rigidity of the Internet. Among them, VNE is one of the key problems of NV. Since VNE is an NP-hard problem, a lot of research has focused on the evolutionary algorithm’s masterpiece genetic algorithm. However, the parameter setting in the traditional method is too dependent on experience, and its low flexibility makes it unable to adapt to increasingly complex network environments. In addition, link mapping strategies that do not consider load balancing can easily cause link blocking in high-traffic environments. In the IoT environment involving medical, disaster relief, life support, and other equipment, network performance and stability are particularly important. Therefore, how to provide a more flexible virtual network mapping service in a heterogeneous network environment with large traffic is an urgent problem. Aiming at this problem, a virtual network mapping strategy based on hybrid genetic algorithm is proposed. This strategy uses a dynamically calculated cross probability and pheromone-based mutation gene selection strategy to improve the flexibility of the algorithm. In addition, a weight update mechanism based on load balancing is introduced to reduce the probability of mapping failure while balancing the load. Simulation results show that the proposed method performs well in a number of performance metrics including mapping average quotation, link load balancing, mapping cost–benefit ratio, acceptance rate, and running time.

Reprinted from Ref. [1], with permission of Springer

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Zhang, F. Liu, C. Jiang, A. Benslimane, J.-L. Gorricho, J. Serrat-Fernandez, A multi-domain VNE algorithm based on load balancing in the IoT networks. Mobile Netw. Appl. (2021)

    Google Scholar 

  2. H. Guo, J. Liu, UAV-enhanced intelligent offloading for Internet of Things at the edge. IEEE Trans. Ind. Inform. 16(4), 2737–2746 (2020)

    Article  Google Scholar 

  3. P. Zhang, X. Huang, Y. Wang, Chunxiao Jiang, S. He, H. Wang, Semantic similarity computing model based on multi model fine-grained nonlinear fusion. IEEE Access 9, 8433–8443 (2021)

    Google Scholar 

  4. J. Zhao, Q. Li, Y. Gong, K. Zhang, Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks. IEEE Trans. Veh. Technol. 68(8), 7944–7956 (2019)

    Article  Google Scholar 

  5. H. Guo, J. Liu, J. Lv, Toward intelligent task offloading at the edge. IEEE Netw. 1–7 (2019)

    Google Scholar 

  6. H. Guo, J. Zhang, J. Liu, FiWi-enhanced vehicular edge computing networks: collaborative task offloading. IEEE Veh. Technol. Mag. 14(1), 45–53 (2019)

    Article  Google Scholar 

  7. J. Du, C. Jiang, Z. Han, H. Zhang, S. Mumtaz, Y. Ren, Contract mechanism and performance analysis for data transaction in mobile social networks. IEEE Trans. Netw. Sci. Eng. 6(2), 103–115 (2019)

    Article  Google Scholar 

  8. J. Du, C. Jiang, H. Zhang, Y. Ren, M. Guizani, Auction design and analysis for SDN-based traffic offloading in hybrid satellite-terrestrial networks. IEEE J. Sel. Areas Commun. 36(10), 2202–2217 (2018)

    Article  Google Scholar 

  9. J. Du, E. Gelenbe, C. Jiang, H. Zhang, Y. Ren, Contract design for traffic offloading and resource allocation in software defined ultra-dense networks. IEEE J. Sel. Areas Commun. 35(11), 2457–2467 (2017)

    Article  Google Scholar 

  10. C. Jiang, Y. Chen, K.J.R. Liu, Distributed adaptive networks: a graphical evolutionary game-theoretic view. IEEE Trans. Signal Process. 61(22), 5675–5688 (2013)

    Article  MathSciNet  Google Scholar 

  11. T. Anderson, L. Peterson, S. Shenker, J. Turner, Overcoming the Internet impasse through virtualization. Computer 38(4), 34–41 (2005)

    Article  Google Scholar 

  12. K. Tutschku, T. Zinner, A. Nakao, T.G. Phuoc, Network virtualization: implementation steps towards the future internet. J. Hum. Behav. Soc. Environ. 22(4), 463–478 (2009)

    Google Scholar 

  13. E. Amaldi, S. Coniglio, A.M.C.A. Koster, M. Tieves, On the computational complexity of the virtual network embedding problem. Electron. Notes Discrete Math. 52(1), 213–220 (2016)

    Article  MathSciNet  Google Scholar 

  14. C. Jiang, S. Fan, C. Chen, J. Ma, Y. Ren, Effective management of secondary user’s density in cognitive radio networks. IEICE Trans. Commun. E93-B(9), 2443–2447 (2010)

    Article  Google Scholar 

  15. C. Ouyang, S. Wu, Chunxiao Jiang, J. Cheng, H. Yang, Physical layer security over mixture gamma distributed fading channels with discrete inputs: a unified and general analytical framework. IEEE Commun. Lett. 25(2), 412–416 (2021)

    Google Scholar 

  16. X. Lin, L. Kuang, Z. Ni, C. Jiang, S. Wu, Approximate message passing-based interference cancellation technique for asynchronous NOMA. IEEE Commun. Lett. 24(3), 534–538 (2020)

    Article  Google Scholar 

  17. Z. Yong, M.H. Ammar, Algorithms for assigning substrate network resources to virtual network components, in Infocom IEEE International Conference on Computer Communications (2006)

    Google Scholar 

  18. M. Diallo, A. Quintero, S. Pierre, An efficient approach based on ant colony optimization and Tabu search for a resource embedding across multiple cloud providers. IEEE Trans. Cloud Comput. (2019)

    Google Scholar 

  19. Q. Yang, T. Jiang, N. Beaulieu, J. Wang, C. Jiang, S. Mumtaz, Z. Zhou, Heterogeneous semi-blind interference alignment in finite-SNR networks with fairness consideration. IEEE Trans. Wirel. Commun. 19(4), 2472–2488 (2020)

    Article  Google Scholar 

  20. F. Li, H. Yao, J. Du, C. Jiang, Y. Qian, Stackelberg game-based computation offloading in social and cognitive industrial Internet of Things. IEEE Trans. Ind. Inform. 16(8), 5444–5455 (2020)

    Article  Google Scholar 

  21. H. Cao, H. Han, Z. Qu, L. Yang, Heuristic solutions of virtual network embedding: a survey. China Commun. 15(3), 186–214 (2018)

    Article  Google Scholar 

  22. H. Yao, S. Ma, J. Wang, P. Zhang, C. Jiang, S. Guo, A continuous-decision virtual network embedding scheme relying on reinforcement learning. IEEE Trans. Netw. Serv. Manag 17(2), 864–875 (2020)

    Article  Google Scholar 

  23. J. Lischka, H. Karl, A virtual network mapping algorithm based on subgraph isomorphism detection, in Proceedings of the 1st ACM Workshop on Virtualized Infrastructure Systems and Architectures (2009), pp. 81–88

    Google Scholar 

  24. N.M.M.K. Chowdhury, M.R. Rahman, R. Boutaba, Virtual network embedding with coordinated node and link mapping, in Infocom (2009)

    Google Scholar 

  25. X. Gao, H. Yu, V. Anand, S. Gang, D. Hao, A new algorithm with coordinated node and link mapping for virtual network embedding based on LP relaxation, in Asia Communications & Photonics Conference & Exhibition (2010), pp. 152–153

    Google Scholar 

  26. H. Cao, S. Wu, G. Aujla, Q. Wang, L. Yang, H. Zhu, Dynamic embedding and quality of service driven adjustment for cloud networks. IEEE Trans. Ind. Inform. 16(2), 1406–1416 (2019)

    Article  Google Scholar 

  27. H. Cao, S. Wu, Y. Hu, R. Mann, Y. Liu, L. Yang, H. Zhu, An efficient energy cost and mapping revenue strategy for inter-domain NFV-enabled networks. IEEE Internet Things J. 7(7), 5723–5736 (2019)

    Article  Google Scholar 

  28. H. Cao, Y. Zhu, G. Zheng, L. Yang, A novel optimal mapping algorithm with less computational complexity for virtual network embedding. IEEE Trans. Netw. Serv. Manag. 15(1), 356–371 (2018)

    Article  Google Scholar 

  29. H. Cao, L. Yang, H. Zhu, Novel node-ranking approach and multiple topology attributes-based embedding algorithm for single-domain virtual network embedding. IEEE Internet Things J. 5(1), 108–120 (2018)

    Article  Google Scholar 

  30. Z. Zhang, C. Xiang, S. Su, Y. Wang, L. Yan, A unified enhanced particle swarm optimization-based virtual network embedding algorithm. Int. J. Commun. Syst. 26(8), 1054–1073 (2013)

    Article  Google Scholar 

  31. W. Li, Q. Hua, J. Zhao, Y. Guo, Virtual network embedding with discrete particle swarm optimisation. Electron. Lett. 50(4), 285–286 (2014)

    Article  Google Scholar 

  32. X. Mi, X. Chang, J. Liu, L. Sun, B. Xing, Embedding virtual infrastructure based on genetic algorithm, in International Conference on Parallel and Distributed Computing, Applications and Technologies (2012)

    Google Scholar 

  33. L. Yang, H. Yao, J. Wang, C. Jiang, A. Benslimane, Y. Liu, Multi-UAV-enabled load-balance mobile-edge computing for IoT networks. IEEE Internet Things J. 7(8), 6898–6908 (2020)

    Article  Google Scholar 

  34. H. Yao, X. Yuan, P. Zhang, J. Wang, C. Jiang, M. Guizani, A machine learning approach of load balance routing to support next-generation wireless networks, in 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC) (2019), pp. 1317–1322

    Google Scholar 

  35. H. Zhang, C. Jiang, Z. Feng, Z. Zhang, V.C. Leung, 5g technologies for future wireless networks. Mobile Netw. Appl. 23(6), 1459–1461 (2018)

    Article  Google Scholar 

  36. I. Pathak, D.P. Vidyarthi, A model for virtual network embedding across multiple infrastructure providers using genetic algorithm. Sci. China Inform. Sci. 60(4), 040308 (2017)

    Google Scholar 

  37. L. Zhuang, G. Wang, M. Wang, K. Zhang, A virtual network embedding algorithm based on cellular automata genetic mechanism. MATEC Web Conf. 232(4), 01019 (2018)

    Google Scholar 

  38. C. Jiang, Y. Chen, K.J. Liu, Ray, Y. Ren, Renewal-theoretical dynamic spectrum access in cognitive radio network with unknown primary behavior. IEEE J. Sel. Areas Commun. 31(3), 406–416 (2013)

    Google Scholar 

  39. J. Cai, X. Nian, H. Gu, L. Zhang, A user priority-based virtual network embedding model and its implementation, in IEEE International Conference on Electronics Information & Emergency Communication (2013)

    Google Scholar 

  40. B. Zhou, G. Wen, S. Zhao, X. Lu, D. Zhong, C. Wu, Y. Qiang, Virtual network mapping for multi-domain data plane in Software-Defined Networks, in International Conference on Wireless Communications (2014)

    Google Scholar 

  41. C. Jiang, Y. Chen, Y. Gao, K.J.R. Liu, Joint spectrum sensing and access evolutionary game in cognitive radio networks. IEEE Trans. Wirel. Commun. 12(5), 2470–2483 (2013)

    Article  Google Scholar 

  42. M. Dorigo, C. Blum, Ant colony optimization theory: a survey. Theor. Comput. Sci. 344(2–3), 243–278 (2005)

    Article  MathSciNet  Google Scholar 

  43. G. Shang, X. Jiang, K. Tang, Hybrid algorithm combining ant colony optimization algorithm with genetic algorithm, in 2007 Chinese Control Conference (2007), pp. 701–704

    Google Scholar 

  44. M.G. Lee, K.M. Yu, Dynamic path planning based on an improved ant colony optimization with genetic algorithm, in 2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP) (2018), pp. 1–2

    Google Scholar 

  45. Y.I. Wei, J.W. Wang, H.B. Pan, L.I. Li, Ant colony chaos genetic algorithm for mapping task graphs to a network on chip. Acta Electron. Sin. 39(8), 1832–1836 (2011)

    Google Scholar 

  46. E.W. Zegura, K.L. Calvert, S. Bhattacharjee, How to model an Internet work. IEEE Infocom 2, 594–602 (1996)

    Google Scholar 

  47. C. Jiang, H. Zhang, Y. Ren, H.-H. Chen, Energy-efficient non-cooperative cognitive radio networks: micro, meso, and macro views. IEEE Commun. Mag. 52(7), 14–20 (2014)

    Article  Google Scholar 

  48. C. Jiang, Y. Chen, K.R. Liu, Y. Ren, Network economics in cognitive networks. IEEE Commun. Mag. 53(5), 75–81 (2015)

    Article  Google Scholar 

  49. N. Raveendran, Y. Gu, C. Jiang, N. Tran, M. Pan, L. Song, Z. Han, Cyclic three-sided matching game inspired wireless network virtualization. IEEE Trans. Mobile Comput. 20(2), 416–428 (2021)

    Article  Google Scholar 

  50. C. Jiang, H. Zhang, Y. Ren, Z. Han, K. Chen, L. Hanzo, Machine learning paradigms for next-generation wireless networks. IEEE Wirel. Commun. 24(2), 98–105 (2017)

    Article  Google Scholar 

  51. H. Yao, X. Chen, M. Li, P. Zhang, L. Wang, A novel reinforcement learning algorithm for virtual network embedding. Neurocomputing 284, 1–9 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiang, C., Zhang, P. (2021). A Multi-Domain VNE Algorithm Based on Load Balancing in the IoT Networks. In: QoS-Aware Virtual Network Embedding. Springer, Singapore. https://doi.org/10.1007/978-981-16-5221-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5221-9_18

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5220-2

  • Online ISBN: 978-981-16-5221-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics