Skip to main content

Laccases: Production, Harvest, Recovery, and Potential Industrial Application

  • Chapter
  • First Online:
Industrial Microbiology and Biotechnology
  • 2255 Accesses

Abstract

The laccase enzymes are produced by various insects, bacteria, fungi, and plants. They come under the group of copper-containing oxidase. These enzymes are produced with both submerged and solid-state fermentation processes. The biological biomass waste material can also be used to produce laccase enzyme using solid-state fermentation. Laccases are mostly used in different industries, such as food, paper, and pulp, pharmaceutical, and textile. In this book chapter, various aspects of laccase, such as structure, production in bioreactors, downstream processing, factors affecting the laccase synthesis, and regulation of this enzyme, are discussed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABTS:

2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid

AREs:

Agent reaction components

DABSA:

2,5-diaminobenzenesulfonic corrosive

DMP:

Dimethoxyphenol

EDTA:

Ethylenediaminetetraacetic acid

HSEs:

Heat stun reaction components

IET:

Inward electron move

kDa:

Kilodalton

LMS:

Laccase-interceded system

MREs:

Metal reaction components

PCR:

Polymerase chain reaction

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SmF:

Submerged fermentation

SSF:

Solid-state fermentation

XREs:

Xenobiotic reaction components

References

  • Agrawal K, Verma P (2019a) Laccase: addressing the ambivalence associated with the calculation of enzyme activity. 3 Biotech 9:365

    PubMed  PubMed Central  Google Scholar 

  • Agrawal K, Verma P (2019b) Biodegradation of synthetic dye alizarin cyanine green by yellow laccase producing strain Stropharia sp. ITCC-8422. Biocatalysis and agricultural. Biotechnology 21:101291

    Google Scholar 

  • Agrawal K, Verma P (2020a) Myco-valorization approach using entrapped Myrothecium verrucaria ITCC-8447 on synthetic and natural support via column bioreactor for the detoxification and degradation of anthraquinone dyes. Int Biodeter Biodegr 153(2020):1050521

    Google Scholar 

  • Agrawal K, Verma P (2020b) Production optimization of yellow laccase from Stropharia sp. ITCC 8422 and enzyme-mediated depolymerization and hydrolysis of lignocellulosic biomass for biorefinery application. In: Biomass conversion and biorefinery. Springer, Berlin. https://doi.org/10.1007/s13399-020-00869-w

    Chapter  Google Scholar 

  • Agrawal K, Verma P (2020c) Potential removal of hazardous wastes using white laccase purified by ATPS–PEG–salt system: an operational study. Environ Technol Innov 17:100556

    Google Scholar 

  • Agrawal K, Chaturvedi V, Verma P (2018) Fungal laccase discovered but yet undiscovered. Bioresour Bioprocess 5(4):1–12

    Google Scholar 

  • Agrawal K, Bhardwaj N, Kumar B, Chaturvedi V, Verma P (2019) Process optimization , purification, and characterization of alkaline stable white laccase from Myrothecium verrucaria ITCC-8447 and its application in delignification of agroresidues. Int J Biol Macromol 125:1042–1055

    CAS  PubMed  Google Scholar 

  • Agrawal K, Shankar J, Verma P (2020a) Multicopper oxidase (MCO) laccase from Stropharia sp. ITCC-8422: an apparent authentication using integrated experimental and in silico analysis. 3 Biotech 10:413

    PubMed  PubMed Central  Google Scholar 

  • Agrawal K, Shankar J, Kumar R, Verma P (2020b) Insight into multicopper oxidase laccase from Myrothecium verrucaria ITCC-8447: a case study using in silico and experimental analysis. J Environ Sci Health B 55(12):1048–1060

    CAS  PubMed  Google Scholar 

  • Arregui L et al (2019) Laccases: structure, function, and potential application in water bioremediation. Microb Cell Fact 18:1–33

    Google Scholar 

  • Ausec L et al (2017) The first acidobacterial laccase-like multicopper oxidase revealed by metagenomics shows high salt and thermo-tolerance. Appl Microbiol Biotechnol 101:6261–6276

    CAS  PubMed  Google Scholar 

  • Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30(2):215–242

    CAS  PubMed  Google Scholar 

  • Batista-García RA et al (2016) From lignocellulosic metagenomes to lignocellulolytic genes: trends, challenges and future prospects. Biofuels Bioprod Biorefin 10:864–882

    Google Scholar 

  • Cañas AI, Camarero S (2010) Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 28:694–705

    PubMed  Google Scholar 

  • Eggert C, Temp U, Eriksson KEL (1996) The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol 62:1151–1158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ezike TC, Ezugwu AL, Udeh JO, Eze SOO, Chilaka FC (2020) Purification and characterisation of new laccase from Trametes polyzona WRF03. Biotechnol Rep 28:e00566

    Google Scholar 

  • Fan XZ, Zhou Y, Xiao Y, Xu ZY, Bian YB (2014) Cloning, expression and phylogenetic analysis of a divergent laccase multigene family in Auricularia auricula-judae. Microbiol Res 169:453–462

    CAS  PubMed  Google Scholar 

  • Fang Z et al (2011) A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability. Appl Microbiol Biotechnol 89:1103–1110

    CAS  PubMed  Google Scholar 

  • Galhaup C, Goller S, Peterbauer CK, Strauss J, Haltrich D (2002) Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiology 148:2159–2169

    CAS  PubMed  Google Scholar 

  • Iracheta-Cárdenas MM, Rocha-Peña MA, Galán-Wong LJ, Arévalo-Niño K, Tovar-Herrera OE (2016) A Pycnoporus sanguineus laccase for denim bleaching and its comparison with an enzymatic commercial formulation. J Environ Manage 177:93–100

    PubMed  Google Scholar 

  • Janusz G, Rogalski J, Szczodrak J (2007) Increased production of laccase by Cerrena unicolor in submerged liquid cultures. World J Microbiol Biotechnol 23:1459–1464

    CAS  Google Scholar 

  • Jeon JR, Baldrian P, Murugesan K, Chang YS (2012) Laccase-catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications. J Microbial Biotechnol 5:318–332

    Google Scholar 

  • Kiiskinen LL, Viikari L, Kruus K (2002) Purification and characterisation of a novel laccase from the ascomycete Melanocarpus albomyces. Appl Microbiol Biotechnol 59:198–204

    CAS  PubMed  Google Scholar 

  • Legerská B, Chmelová D, Ondrejovič M (2016) Degradation of synthetic dyes by laccases—a mini-review. Nova Biotechnol Chim 15:90–106

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Lu L et al (2007) Purification and characterization of laccase from Pycnoporus sanguineus and decolorization of an anthraquinone dye by the enzyme. Appl Microbiol Biotechnol 74:1232–1239

    CAS  PubMed  Google Scholar 

  • Mate DM, Alcalde M (2017) Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. J Microbial Biotechnol 10:1457–1467

    CAS  Google Scholar 

  • Monographs M (2020) Laccases in bioremediation and waste valorisation. Springer, Berlin

    Google Scholar 

  • More SS et al (2011) Isolation, purification, and characterization of fungal laccase from Pleurotus sp. Enzyme Res 2011:248735

    PubMed  PubMed Central  Google Scholar 

  • Pezzella C, Guarino L, Piscitelli A (2015) How to enjoy laccases. Cell Mol Life Sci 72:923–940

    CAS  PubMed  Google Scholar 

  • Piscitelli A et al (2011) Induction and transcriptional regulation of laccases in fungi. Curr Genomics 12:104–112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polyakov KM et al (2017) Structural study of the X-ray-induced enzymatic reduction of molecular oxygen to water by Steccherinum murashkinskyi laccase: insights into the reaction mechanism. Acta Crystallogr Sect D Struct Biol 73:388–401

    CAS  Google Scholar 

  • Rodríguez-Couto S (2019) Fungal laccase: a versatile enzyme for biotechnological applications. pp 429–457

    Google Scholar 

  • Sharma V, Ayothiraman S, Dhakshinamoorthy V (2019) Production of highly thermo-tolerant laccase from novel thermophilic bacterium bacillus sp. PC-3 and its application in functionalization of chitosan film. J Biosci Bioeng 127:672–678

    CAS  PubMed  Google Scholar 

  • Siroosi M, Amoozegar MA, Khajeh K (2016) Purification and characterization of an alkaline chloride-tolerant laccase from a halotolerant bacterium, Bacillus sp strain WT. J Mol Catal B: Enzym 134:89–97

    CAS  Google Scholar 

  • Steevensz A, Al-Ansari MM, Taylor KE, Bewtra JK, Biswas N (2009) Comparison of soybean peroxidase with laccase in the removal of phenol from synthetic and refinery wastewater samples. J Chem Technol Biotechnol 84:761–769

    CAS  Google Scholar 

  • Telke AA, Kalyani DC, Jadhav UU, Parshetti GK, Govindwar SP (2009) Purification and characterization of an extracellular laccase from a pseudomonas sp. LBC1 and its application for the removal of bisphenol A. J Mol Catal B: Enzym 61:252–260

    CAS  Google Scholar 

  • Verma P, Madamwar D (2002a) Production of ligninolytic enzymes for dye decolorization by cocultivation of white-rot fungi Pleurotus ostreatus and Phanerochaete chrysosporium under solid-state fermentation. Appl Biochem Biotechnol 102(1–6):109–118

    PubMed  Google Scholar 

  • Verma P, Madamwar D (2002b) Decolorization of synthetic textile dyes by lignin peroxidase of Phanerochaete chrysosporium. Folia Microbiol 47(3):283–286

    CAS  Google Scholar 

  • Verma P, Madamwar D (2002c) Comparative study on transformation of azo dyes by different white rot fungi. Indian J Biotechnol 1:393–396

    Google Scholar 

  • Verma P, Madamwar D (2005) Decolorization of azo dyes using basidiomycete strain PV 002. World J Microbiol Biotechnol 21(4):481–485

    CAS  Google Scholar 

  • Wikee S et al (2019) Characterization and dye decolorization potential of two laccases from the marine-derived fungus Pestalotiopsis sp. Int J Mol Sci 20:1864

    CAS  PubMed Central  Google Scholar 

  • Wingfield P (1998) Protein precipitation using ammonium sulfate. In: Current protocols in protein science, vol 13. Wiley, Hoboken, NJ, pp A.3F.1–A.3F.8

    Google Scholar 

  • Xiao YZ et al (2003) Purification, molecular characterization and reactivity with aromatic compounds of a laccase from basidiomycete Trametes sp. strain AH28-2. Appl Microbiol Biotechnol 60:700–707

    CAS  PubMed  Google Scholar 

  • Yang J et al (2017) Laccases: production, expression regulation, and applications in pharmaceutical biodegradation. Front Microbiol 8:832

    PubMed  PubMed Central  Google Scholar 

  • Yang Q et al (2018) Characterization of a novel, cold-adapted, and thermostable laccase-like enzyme with high tolerance for organic solvents and salt and potent dye decolorization ability, derived from a marine metagenomic library. Front Microbiol 9:2998

    PubMed  PubMed Central  Google Scholar 

  • Yaropolov AI, Skorobogat’ko OV, Vartanov SS, Varfolomeyev SD (1994) Laccase—properties, catalytic mechanism, and applicability. Appl Biochem Biotechnol 49:257–280

    CAS  Google Scholar 

  • Zerva A, Koutroufini E, Kostopoulou I, Detsi A, Topakas E (2019) A novel thermophilic laccase-like multicopper oxidase from Thermothelomyces thermophila and its application in the oxidative cyclization of 2′,3,4-trihydroxychalcone. N Biotechnol 49:10–18

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Surajbhan Sevda thanks NIT Warangal for the Research Seed grant (P1128) for a support of this work.

Conflicts of Interest

There is no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajbhan Sevda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bansal, R., Sevda, S. (2022). Laccases: Production, Harvest, Recovery, and Potential Industrial Application. In: Verma, P. (eds) Industrial Microbiology and Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-16-5214-1_9

Download citation

Publish with us

Policies and ethics