Skip to main content

Use of Agrochemicals in Agriculture: Alarming Issues and Solutions

  • Chapter
  • First Online:
Input Use Efficiency for Food and Environmental Security

Abstract

Agricultural growth affects the economic growth of a country through the supply of food and other raw materials to nonagricultural sectors, and it is quite obvious that agricultural productivity through judicious use of inputs could play a vital role in structural change in the economy. But the indiscriminate use, rather misuse of chemical inputs in agriculture, has led to many problems in our ecosystem. A rough estimate of pesticide usage among the different developing countries shows that East Asia (including China) and Latin America consume almost 70% of the total pesticide use with only 4% in Sub-Saharan Africa. Due to the irrational use of agrochemicals, the degree of pollution in soil, air, water, and ecosystem as a whole is a big concern for us. A typical estimate of soil surface nitrogen balance for agricultural land in India reveals that inorganic fertilizer is the major contributor of nitrogen inputs in the ecosystem (10.8 Tg N) followed by manure (1.53 Tg) and a positive balance of 2.32–1.89 Tg N was found which is responsible for various environmental hazards. The judicious use of inputs matching with the requirement of the crops and their application below residue detection limits are the priority areas to protect our future generations from hazardous effects and to provide food to every mouth on the other hand. We have to assess the harmful effects of various chemical inputs used in agriculture continuously, and suitable strategies are to be developed orienting towards the rational use of inputs. The major impacts of chemicals and their contaminants are alterations in species diversity, degradation of physical–chemical–biological parameters of soil, water, and atmosphere, making them of inferior quality. This chapter describes the impact of alarming uses of chemicals on agricultural systems, water bodies as well as on the environment on one hand, and framing of suitable strategies targeting judicious use of inputs in agriculture on the other. Strategies include sustainable resource management through conservation agriculture practices, site-specific nutrient management, precision farming, integrated management of pests and diseases, agricultural waste management, and use of nano-molecules in addition to some biotechnological tools and policy interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BOD:

Biological oxygen demand

CA:

Conservation agriculture

CCC:

Critical coagulation concentration

CT:

Conventional tillage

FAO:

Food and Agriculture Organization

GMO:

Genetically modified organism

GPS:

Global positioning system

HCH:

Hexachlorocyclohexane

HYVs:

High yielding varieties

IGP:

Indo-Gangetic Plains

KCC:

Kisan credit card

NUE:

Nutrient use efficiency

ORP:

Operational research project

PA:

Precision agriculture

PPVFRA:

Protection of Plant Variety and Farmers Right Act

QUEFTS:

Quantitative evaluation of the fertility of tropical soils

RTKGPS:

Real-time kinematic GPS

SOC:

Soil organic carbon

SSNM:

Site-specific nutrient management

UV:

Ultraviolet

VRI:

Variable rate irrigation

VRNA:

Variable rate nutrient application

VRPA:

Variable rate pesticide application

References

  • Abdulrachman S, Gines HC, Nagarajan R, Satawathananont S, Son TT, Tan PS, Wang GH (2002) Variation in the performance of site-specific nutrient management among different environments with irrigated rice in Asia. Better Crop Int 16(2):18–23

    Google Scholar 

  • Abhilash PC, Singh N (2008) Pesticide use and application: an Indian scenario. J Hazard Mater 165:1–12

    Article  PubMed  Google Scholar 

  • Abidine A, Heidman B, Upadhyaya S, Hills D (2002) Application of RTK GPS based auto-guidance system in agricultural production. ASAE, St. Joseph

    Google Scholar 

  • Abler D (2015) Economic evaluation of agricultural pollution control options for China. J Integra Agri 14(6):1045–1056

    Article  Google Scholar 

  • Agarwal A, Pandey RS, Sharma B (2010) Water pollution with special reference to pesticide contamination in India. J Water Resource Protec 2(5):432–448

    Article  Google Scholar 

  • Agrawal A, Ravi SP, Bechan S (2010) Water pollution with special reference to pesticide contamination in India. J Water Resource Prot 2:432–438

    Article  CAS  Google Scholar 

  • Alexandratos N (1995) World agriculture: towards 2010: an FAO study. Food & Agriculture Organization, Rome

    Google Scholar 

  • Ali MT, Shahram S (2007) Converter slag as a liming agent in the amelioration of acidic soils. Int J Agric Biol 9:715–720

    CAS  Google Scholar 

  • Alix A, Capri E (2018) Modern agriculture in Europe and the role of pesticides. Adv Chem Pollution Environ Manage Protec 2:1–22

    Article  Google Scholar 

  • Alvarez A, Saez JM, Costa JSD, Colin VL, Fuentes MS, Cuozzo SA, Benimeli CS, Polti MA, Amoroso MJ (2017) Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 166:41–62

    Article  CAS  PubMed  Google Scholar 

  • Amann M, Gomez-Sanabria A, Klimont Z, Maas R, Winiwarter W (2017) Measures to address air pollution from agricultural sources. IIASA report

    Google Scholar 

  • Annunziata T, Coll V (2012) Possible uses of steelmaking slag in agriculture: an overview. In: Achilias D (ed) Material recycling - trends and perspectives. Intech, Rijeka

    Google Scholar 

  • Aouada FA, de Moura MR (2015) Nanotechnology applied in agriculture: controlled release of agrochemicals. In: Nanotechnologies in food and agriculture. Springer, Cham, pp 103–118

    Chapter  Google Scholar 

  • Arora A, Tomar SS, Sondhia S (2013) Efficacy of herbicides on wheat and their terminal residues in soil, grain and straw. Ind J Weed Sci 45(2):109–112

    Google Scholar 

  • Atafar Z, Mesdaghinia A, Nouri J, Homaee M, Yunesian M, Ahmadimoghaddam M, Mahvi AH (2010) Effect of fertilizer application on soil heavy metal concentration. Environ Monit Assess 160(1–4):83–89

    Article  CAS  PubMed  Google Scholar 

  • Ayers RS, Westcot DW (1985) Water quality for agriculture. FAO Irrigation and drainage paper. Food and Agricultural Organization, Rome, p 74

    Google Scholar 

  • Bagwan JD, Patil SJ, Mane AS, Kadam VV, Vichare S (2010) Genetically modified crops:food of the future. Int J Adv Biotech Res 1(1):21–30

    Google Scholar 

  • Baig MB, Shahid SA, Straquadine GS (2013) Making rainfed agriculture sustainable through environmental friendly technologies in Pakistan: a review. Int Soil Water Conserv Res 1:36–52. https://doi.org/10.1016/S2095-6339(15)30038-1

    Article  Google Scholar 

  • Baker CJ, Saxton KE, Ritchie WR, Chamen WCT, Reicosky DC, Ribeiro MFS, Justice SE, Hobbs PR (2007) No-tillage seeding in conservation agriculture, 2nd edn. CABI/FAO, Wallingford/Rome

    Google Scholar 

  • Basu M, Pande M, Bhadoria PBS, Mahapatra SC (2009) Potential fly-ash utilization in agriculture: a global review. Prog Nat Sci 19:1173–1186. https://doi.org/10.1016/j.pnsc.2008.12.006

    Article  CAS  Google Scholar 

  • Benbi DK (2017) Nitrogen balances of intensively cultivated rice–wheat cropping systems in original green revolution states of India. In: Abrol YP, Adhya TK, Aneja VP, Raghuram N, Pathak H, Kulshrestha U, Chhemendra S, Singh B (eds) The Indian nitrogen assessment. Elsevier, Amsterdam, pp 77–93

    Chapter  Google Scholar 

  • Benbi DK, Biswas CR, Kalkat JS (1991) Nitrate distribution and accumulation in an Ustochrept soil profile in a long term fertilizer experiment. Fertil Res 28(2):173–177

    Article  CAS  Google Scholar 

  • Bhan S, Behera UK (2014) Conservation agriculture in India – problems, prospects and policy issues. Int Soil Water Conserv Res 2:1–12. https://doi.org/10.1016/S2095-6339(15)30053-8

    Article  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal Nanobiotechnology. Fungal biology. Springer, Cham. https://doi.org/10.1007/978-3-319-42990-8_15

    Chapter  Google Scholar 

  • Bibi S, Saifullah NA, Dahlawi S (2016) Environmental impacts of nitrogen use in agriculture, nitrate leaching and mitigation strategies. In: Hakeem K, Akhtar J, Sabir M (eds) Soil science: agricultural and environmental prospectives. Springer, Cham, pp 131–157

    Chapter  Google Scholar 

  • Bindraban PS, Dimkpa C, Nagarajan L, Roy A, Rabbinge R (2015) Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol Fertil Soils 51:897–911. https://doi.org/10.1007/s00374-015-1039-7

    Article  CAS  Google Scholar 

  • Blair N, Faulkner RD, Till AR, Poulton PR (2006) Long-term management impacts on soil C, N and physical fertility: part I: Broadbalk experiment. Soil Tillage Res 91(1–2):30–38

    Article  Google Scholar 

  • Boccia F, Sarnacchiaro P (2015) Genetically modified foods and consumers perspective. Recent Pat Food Nutr Agric 7:28–34

    Article  PubMed  Google Scholar 

  • Bora GC, Nowatzki JF, Roberts DC (2012) Energy savings by adopting precision agriculture in rural USA. Energy Sustain Soc 2:1–5. https://doi.org/10.1186/2192-0567-2-22

    Article  Google Scholar 

  • Bordoloi N, Baruah KK, Bhattacharyya P, Gupta PK (2019) Impact of nitrogen fertilization and tillage practices on nitrous oxide emission from a summer rice ecosystem. Arch Agron Soil Sci 65(11):1493–1506

    Article  CAS  Google Scholar 

  • Buyanovsky GA, Wagner GH (1987) Carbon transfer in a winter wheat (Triticum aestivum) ecosystem. Biol Fertil Soils 5(1):76–82

    Article  Google Scholar 

  • Cai Z, Wang B, Xu M, Zhang H, He X, Zhang L, Gao S (2015) Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China. J Soil Sediment 15(2):260–270

    Article  CAS  Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8(3):559–568

    Article  Google Scholar 

  • Chakraborty P, Zhang G, Li J, Xu Y, Liu X, Tanabe S, Jones KC (2010) Selected organochlorine pesticides in the atmosphere of major Indian cities: levels, regional versus local variations, and sources. Environ Sci Technol 44(21):8038–8043

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Mulchandani A, Deshusses MA (2005) Environmental biotechnology: challenges and opportunities for chemical engineers. AICHE J 51(3):690–695

    Article  CAS  Google Scholar 

  • Choi C, Erbach D, Smith R (1990) Navigational tractor guidance system. Trans ASAE 33:699–706

    Article  Google Scholar 

  • Choudhary M, Ghasal PC, Kumar S, Yadav RP, Singh S, Meena VS, Bisht JK (2016) Conservation agriculture and climate change: an overview. In: Bisht J, Meena V, Mishra P, Pattanayak A (eds) Conservation agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-10-2558-7_1

    Chapter  Google Scholar 

  • Collier P, Dercon S (2014) African agriculture in 50 years: smallholders in a rapidly changing world? World Dev 63:92–101

    Article  Google Scholar 

  • Dammer KH, Wartenberg G (2007) Sensor-based weed detection and application of variable herbicide rates in real time. Crop Prot 26:270–277. https://doi.org/10.1016/j.cropro.2005.08.018

    Article  Google Scholar 

  • Dasgupta S, Meisner C, Wheeler D, Xuyen K, Lam NT (2007) Pesticide poisoning of farm workers-implications of blood test result from Vietnam. Int J Hyg Environ Health 210:121–132

    Article  CAS  PubMed  Google Scholar 

  • Datta S, Dhillon BS, Gautam PL, Karihaloo JL, Mahadevappa M, Mayee CD, Padmanaban G, Parida A, Paroda RS, Sharma M, Sharma TR, Singh NK, Singh RB, Sonti RV, Tyagi AK, Varma A, Veluthambi K (2019) India needs genetic modification technology in agriculture. Curr Sci 117(3):390–394. https://doi.org/10.8080/jspui/handle/123456789/970

    Article  Google Scholar 

  • De Vita P, Di Paolo E, Fecondo G, Fonzo ND, Pisante M (2007) No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil Tillage Res 92:69–78. https://doi.org/10.1016/j.still.2006.01.012

    Article  Google Scholar 

  • De-Gorter H, Swinnen J (2002) Political economy of agricultural policy. In: Gardner BL, Rausser GC (eds) Handbook of agricultural economics, vol 2. North Holland, Amsterdam, pp 1893–1943

    Google Scholar 

  • Devkota M, Martius C, Gupta RK, Devkota KP, McDonald AJ (2015) Managing soil salinity with permanent bed planting in irrigated production systems in Central Asia. Agric Ecosyst Environ 202:90–97

    Article  CAS  Google Scholar 

  • Dhawan AK, Singh S, Kumar S (2009) Integrated pest management (IPM) helps reduce pesticide load in cotton. J Agric Sci Technol 11:599–611

    Google Scholar 

  • Diao X, Hazell P, Thurlow J (2010) The role of agriculture in African development. World Dev 38(10):1375–1383

    Article  Google Scholar 

  • Disfani M, Mikhak A, Kassaee MZ, Maghari A (2017) Effects of nano Fe/SiO2 fertilizers on germination and growth of barley and maize. Arch Agron Soil Sci 63:817–826. https://doi.org/10.1080/03650340.2016.1239016

    Article  CAS  Google Scholar 

  • Dobermann A, Cassman KG (2002) Plant nutrient management for enhanced productivity in intensive grain production systems of the United States and Asia. Plant and Soil 247:153–175. https://doi.org/10.2307/24123904

    Article  CAS  Google Scholar 

  • Du W, Yang J, Peng Q, Liang X, Mao H (2019) Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: from toxicity and zinc biofortification. Chemosphere 227:109–116. https://doi.org/10.1016/j.chemosphere.2019.03.168

    Article  CAS  PubMed  Google Scholar 

  • Dubey RK (2013) Organic farming beneficial to biodiversity conservation, rural livelihood and nutritional security. Ind J App Res 3:18–21

    Article  Google Scholar 

  • Dwivedy N (2011) Challenges faced by the agriculture sector in developing countries with special reference to India. Int J Rural Stud 18:2–7

    Google Scholar 

  • Eliazer NARL, Ravichandran K, Antony U (2019) The impact of the Green revolution on indigenous crops of India. J Ethn Food 6:8. https://doi.org/10.1186/s42779-019-0011-9

    Article  Google Scholar 

  • Estrada AC, Diaz DV, Hernandez MCA (2017) The role of biotechnology in agricultural production and food supply. Cien Inv Agr 44(1):1–11

    Article  Google Scholar 

  • Evans JR (2013) Improving photosynthesis. Plant Physiol 162:1780–1793. https://doi.org/10.1104/pp.113.219006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Siddique KHM (eds) (2015) Conservation agriculture. Springer, Cham

    Google Scholar 

  • Fonte SJ, Yeboah E, Ofori P, Quansah GW, Vanlauwe B, Six J (2009) Fertilizer and residue quality effects on organic matter stabilization in soil aggregates. Soil Sci Soc Am J 73(3):961–966

    Article  CAS  Google Scholar 

  • Ganesan L, Pushpavalli K (2007) Utilization of agriculture inputs and its outcome in indian agriculture. Shanlax Int J Econ 5(4):65–79

    Google Scholar 

  • Gao W, Bian X (2017) Evaluation of the agronomic impacts on yield-scaled N2O emission from wheat and maize fields in China. Sustainability 9(7):1201

    Article  Google Scholar 

  • Gathala MK, Ladha JK, Kumar V, Saharawat YS, Kumar V, Sharma PK, Sharma S, Pathak H (2011) Tillage and crop establishment affects sustainability of south Asian rice–wheat system. Agron J 103:961–971

    Article  Google Scholar 

  • Gomes MP, Bicalho EM, Smedbol E, Cruz FVDS, Lucotte M, Garcia QS (2017) Glyphosate can decrease germination of glyphosate-resistant soybeans. J Agric Food Chem 65(11):2279–2286

    Article  CAS  PubMed  Google Scholar 

  • Gomes MP, Richardi VS, Bicalho EM, da Rocha DC, Navarro-Silva MA, Soffiatti P, Garcia QS, Sant'Anna-Santos BF (2019) Effects of ciprofloxacin and roundup on seed germination and root development of maize. Sci Total Environ 651:2671–2678

    Article  CAS  PubMed  Google Scholar 

  • Green JM (2014) Current state of herbicides in herbicide resistant crops. Pest Manag Sci 70(9):1351–1357

    Article  CAS  PubMed  Google Scholar 

  • Gupta UC, Gupta SC (1998) Trace element toxicity relationships to crop production and livestock and human health: implications for management. Commun Soil Sci Plant Anal 29(11–14):1491–1522

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Mohsin SM, Bhuyan MB, Bhuiyan TF, Anee TI, Masud AAC, Nahar K (2020) Phytotoxicity, environmental and health hazards of herbicides: challenges and ways forward. In: Narasimha M, Prasad V (eds) Agrochemicals detection, treatment and remediation. Butterworth-Heinemann, Oxford, pp 55–99

    Chapter  Google Scholar 

  • He CC (2013) Food security-century challenge and response. Academic Press, Amsterdam

    Google Scholar 

  • Hefty D (2014) Variable rate & variety planting in wheat and soybeans. In: Ag PhD Newsletter http://www.agphd.com/ag-phd-newsletter/2014/03/21/variable-rate-variety-planting-in-wheat-and-soybeans/. Accessed 21 Aug 2020

  • Hellerstein D, Vilorio D, Ribaudo M (2019) Agricultural resources and environmental indicators. EIB-208, U.S. Department of Agriculture, Economic Research Service, May 2019

    Google Scholar 

  • Hobbs P, Gupta R (2004) Problems and challenges of no-till farming for the rice-wheat systems of the indo-Gangetic Plains in South Asia. In: Lal R, Hobbs P, Uphoff N, Hansen DO (eds) Sustainable agriculture and the Rice-wheat system. Ohio State University and Marcel Dekker, Columbus and New York, pp 101–119

    Chapter  Google Scholar 

  • Hossen MA, Hossain MM, Haque ME, Bell RW (2018) Transplanting into nonpuddled soils with a small-scale mechanical transplanter reduced fuel, labour and irrigation water requirements for rice (Oryza sativa L.) establishment and increased yield. Field Crop Res 225:141–151

    Article  Google Scholar 

  • Huang B, Kuo S, Bembenek R (2004) Availability of cadmium in some phosphorus fertilizers to field-grown lettuce. Water Air Soil Pollut 158(1):37–51

    Article  CAS  Google Scholar 

  • HydroSense (2013) Innovative precision technologies for optimised irrigation and integrated crop management in a water-limited agrosystem. In: HydroSense, Thessalia (Ellas). https://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3466. Accessed 21 Aug 2020

  • Islam AKMS, Hossain MM, Saleque MA (2014) Effect of unpuddled transplanting on the growth and yield of dry season rice in high barrind tracts. The Agriculturists 12(2):91–97

    Article  Google Scholar 

  • Islam S, Gathala MK, Tiwari TP, Timsina J, Liang AM, Maharajan S, Chowdhury AK, Bhattacharya PM, Dhar T, Mitra B, Kumar S, Srivastava PK, Dutta SK, Shrestha R, ManandharS SSR, Paneru P, Siddique N, Hossain A, Islam R, Ghosh AK, Rahman MA, Kumar U, Rao KK, Gerard B (2019) Conservation agriculture based sustainable intensification: increasing yields and water productivity for smallholders of the eastern Gangetic Plains. Field Crop Res 238:1–17

    Article  Google Scholar 

  • Jain N, Bhatia A, Pathak H (2014) Emission of air pollutants from crop residue burning in India. Aerosol Air Qual Res 14:422–430. https://doi.org/10.4209/aaqr.2013.01.0031

    Article  CAS  Google Scholar 

  • Jala S, Goyal D (2006) Fly ash as a soil ameliorant for improving crop production—a review. Bioresour Technol 97:1136–1147. https://doi.org/10.1016/j.biortech.2004.09.004

    Article  CAS  PubMed  Google Scholar 

  • Janaki P, Meena S, Chinnusamy C, Murali AP, Nalini K (2012) Field persistence of repeated use of atrazine in sandy clay loam soil under maize. Madras Agric J 99(7–9):533–537

    Google Scholar 

  • Jat RK, Singh RG, Kumar M, Jat ML, Parihar CM, Bijarniya D, Sutaliya JM, Jat MK, Parihar MD, Kakraliya SK, Gupta RK (2019) Ten years of conservation agriculture in a rice-maize rotation of eastern Gangetic plains of India: yield trends, water productivity and economic profitability. Field Crop Res 232:1–10. https://doi.org/10.1016/j.fcr.2018.12.004

    Article  Google Scholar 

  • Johl SS (2012) Economics and politics of farm subsidies in India. In: Agricultural sustainability: progress and prospects in crop research. Elsevier Science, San Diego, p 253

    Google Scholar 

  • Jones JW, Antle JM, Basso B, Boote KJ, Conant RT, Foster I, Godfray HCJ, Herroro M, Howitt RE, Janssen S, Keating BA, Munoz-Carpena R, Porter CH, Rosenzweig C, Wheeler TR (2017) Toward a new generation of agricultural system data, models, and knowledge products: state of agricultural systems science. Agr Syst 155:269–288. https://doi.org/10.1016/j.agsy.2016.09.021

    Article  Google Scholar 

  • Karkee M, Steward B, Kruckeberg J (2013) Automation of pesticide application systems. In: Zhang Q, Pierce F (eds) Agricultural automation, fundamentals and practices. CRC Press, Boca Raton

    Google Scholar 

  • Karki TB, Shrestha J (2015) Should we go for conservation agriculture in Nepal? Int J Global Sci Res 2(4):271–276

    Google Scholar 

  • Kassam A, Friedrich T, Derpsch R (2018) Global spread of conservation agriculture. Int J Environ Stud 5:1–23. https://doi.org/10.1080/00207233.2018.1511353

    Article  Google Scholar 

  • Kassam AH, Friedrich T, Derpsch R, Kienzle J (2014) Worldwide adoption of conservation agriculture. In 6th world congress on conservation agriculture 22–27 June 2014, Winnipeg

    Google Scholar 

  • Khan FA, Ansari AA (2005) Eutrophication: an ecological vision. Bot Rev 71(4):449–482

    Article  Google Scholar 

  • Khan MN, Mobin M, Abbas ZK, Alamri SA (2018) Fertilizers and their contaminants in soils, surface and groundwater. Encycl Anthropo 5:225–240

    Article  Google Scholar 

  • Koch B, Khosla R, Frasier WM et al (2004) Economic feasibility of variable-rate nitrogen application utilizing site-specific management zones. Agron J 96:1572–1580. https://doi.org/10.2134/agronj2004.1572

    Article  Google Scholar 

  • KögelKnabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B, von Lützow M (2008) An integrative approach of organic matter stabilization in temperate soils: linking chemistry, physics, and biology. J Plant Nutr Soil Sci 171(1):5–13

    Article  Google Scholar 

  • Koli P, Bhardwaj NR, Mahawer SK (2019) Agrochemicals: harmful and beneficial effects of climate changing scenarios. In: Choudhary KK, Kumar A, Singh AK (eds) Climate change and agricultural ecosystems. Woodhead Publishing, New York, pp 65–94

    Chapter  Google Scholar 

  • Kumar S, Meena RS, Singh RK, Munir TM, Datta R, Danish S, Singh GS, Yadav KS (2021) Soil microbial and nutrient dynamics under different sowings environment of Indian mustard (Brassica juncea L.) in rice based cropping system. Sci Rep 11:5289. https://doi.org/10.1038/s41598-021-84742-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladha JK, Reddy CK, Padre AT, Van Kessel C (2011) Role of nitrogen fertilization in sustaining organic matter in cultivated soils. J Environ Qual 40(6):1756–1766

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2015) Sequestering carbon and increasing productivity by conservation agriculture. JSWC70: 55A-62A. https://doi.org/10.2489/jswc.70.3.55A

  • Lehtiniemi M, Engström-Öst J, Viitasalo M (2005) Turbidity decreases anti-predator behaviour in pike larvae, Esoxlucius. Environ Biol Fishes 73(1):1–8

    Article  Google Scholar 

  • Lin CSK, Pfaltzgraff LA, Herrero-Davila L, Mubofu EB (2013) Food waste as a valuable resource for the production of chemicals, materials and fuels: current situation and global perspective. Energ Environ Sci 6:426. https://doi.org/10.1039/c2ee23440h

    Article  CAS  Google Scholar 

  • Loganathan P, Mackay AD, Lee J, Hedley MJ (1995) Cadmium distribution in hill pastures as influenced by 20 years of phosphate fertilizer application and sheep grazing. Soil Res 33(5):859–871

    Article  CAS  Google Scholar 

  • Long S, Zhu X, Naidu S, Ort D (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29:315–330. https://doi.org/10.1111/j.1365-3040.2005.01493.x

    Article  CAS  PubMed  Google Scholar 

  • Maiti D, Das DK, Pathak H (2006) Simulation of fertilizer requirement for irrigated wheat in eastern India using the QUEFTS model. Sci World J 6:231–245. https://doi.org/10.1100/tsw.2006.43

    Article  Google Scholar 

  • Majumdar K, Jat ML, Pampolino M, Satyanarayana T, Dutta S, Kumar A (2013) Nutrient management in wheat: current scenario, improved strategies and future research needs in India. J Wheat Res 4:1–10

    Google Scholar 

  • Malhi SS, Harapiak JT, Nyborg M, Gill KS (2000) Effects of long term applications of various nitrogen sources on chemical soil properties and composition of bromegrass hay. J Plant Nutr 23(7):903–912

    Article  CAS  Google Scholar 

  • Malik RK, Gupta RK, Singh CM, Yadav A, Brar SS, Thakur TC, Singh SS (2005) Accelerating the adoption of resource conservation technologies in rice wheat system of the indo-Gangetic plains. In: Proceedings of project workshop, Directorate of Extension Education, Chaudhary Charan Singh Haryana agricultural university (CCSHAU), June 1–2. CCSHAU, Hisar, India

    Google Scholar 

  • Mandal A, Sarkar B, Mandal S, Vithanage M, Patra AK, Manna MC (2020) Impact of agrochemicals on soil health. In: Narasimha M, Prasad V (eds) Agrochemicals detection, treatment and remediation. Butterworth-Heinemann, Oxford, pp 161–187

    Chapter  Google Scholar 

  • Marschner P, Kandeler E, Marschner B (2003) Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol Biochem 35(3):453–461

    Article  CAS  Google Scholar 

  • Massah J, Azadegan B (2016) Effect of chemical fertilizers on soil compaction and degradation. Agric Mechan Asia Latin Am 47(1):44–50

    Google Scholar 

  • Mateo-Sagasta J, Zadeh SM, Turral H, Burke J (2017) Water pollution from agriculture: a global review. Executive summary. Rome, Italy: FAO Colombo, Sri Lanka: international water management institute (IWMI). CGIAR research program on water, land and ecosystems (WLE)

    Google Scholar 

  • Matos-Moreira M, Cunha M, Lopez-Mosquera E, Rodriguez T, Carral E (2012) Agro-industrial waste management: a case study of soil fauna responses to the use of biowaste as meadow fertiliser in Galiza, Northwestern Spain. In: Waste management - an integrated vision. Gateway Business Books, Washington, DC. https://doi.org/10.5772/48075

    Chapter  Google Scholar 

  • McMillan MS, Harttgen K (2014) What is driving the ‘African growth Miracle'? Working paper, National Bureau of Economic Research

    Google Scholar 

  • Meena RS, Kumar S, Datta R, Lal R, Vijayakumar V, Brtnicky M, Sharma MP, Yadav GS, Jhariya MK, Jangir CK, Pathan SI, Dokulilova T, Pecina V, Marfo TD (2020) Impact of agrochemicals on soil microbiota and management: a review. Land 9(2):34. https://doi.org/10.3390/land9020034

    Article  Google Scholar 

  • Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177:272–280. https://doi.org/10.1016/j.plantsci.2009.06.005

    Article  CAS  Google Scholar 

  • Mitra B, Bhattacharya PM, Ghosh A, Patra K, Chowdhury AK, Gathala MK (2018) Herbicides options for effective weed management in zero-till maize. Ind J Weed Sci 50(2):137–141

    Article  Google Scholar 

  • Mitra B, Majumdar K, Dutta SK, Mondal T, Das S, Banerjee H, Ray K, Satyanarayana T (2019) Nutrient management in wheat (Triticum aestivum) production system under conventional and zero tillage in eastern sub-Himalayan plains of India. Indian J Agric Sci 89(5):775–784

    CAS  Google Scholar 

  • Mitra B, Mookherjee S, Das S (2014) Performances of wheat under various tillage and nitrogen management in sub-Himalayan plains of West Bengal. J Wheat Res 6(2):150–153

    Google Scholar 

  • Mitra B, Patra K (2019) Performance of rice-wheat cropping system under conservation agriculture based establishment techniques in eastern Indian plains. J Cereal Res 11(3):278–274

    Article  Google Scholar 

  • Mitra B, Patra K, Bhattacharya PM, Chowdhury AK (2018a) Unpuddled transplanting: a productive, profitable and energy-efficient establishment technique in rice under eastern sub-Himalayan plains. Oryza 55(3):459–466

    Article  Google Scholar 

  • Mondal T, Mitra B, Das S (2018) Precision nutrient management in wheat (Triticum aestivum L.) using nutrient expert: growth phenology, yield, nitrogen use efficiency and profitability under eastern sub-Himalayan plains. Ind J Agron 63(2):174–180

    Google Scholar 

  • Muchabi J, Lungu OI, Mweetwa AM (2014) Conservation agriculture in Zambia: effects on selected soil properties and biological nitrogen fixation in soyabeans (Glycine max (L.) Merr). Sustain Agric Res 3(3):28–36

    Google Scholar 

  • Murgai R (2001) The green revolution and productivity paradox: evidence from the Indian Punjab. Agric Econ 25(2–3):199–209

    Article  Google Scholar 

  • Murray DAH, Lloyd RJ, Hopkinson JE (2005) Efficacy of new insecticides for management of Helicoverpa spp. (Lepidoptera: Noctuidae) in Australian grain crops. Aust J Entomol 44:62–67. https://doi.org/10.1111/j.1440-6055.2005.00422.x

    Article  Google Scholar 

  • Pasalu I, Mishra B, Krrishnaiah N, Katti G (2004) Integrated pest management in rice in India: status and prospects. In: Birthal P, Sharma O (eds) Proceedings 11, National Centre for Agricultural Economics and Policy Reseach and National Centre for Integrated Pest Management. New Delhi, India, pp. 237–245

    Google Scholar 

  • Patra K, Singha P, Mitra B (2018) Performance of different rice and wheat varieties under alternate crop establishment techniques in rice-wheat rotation. J Crop Weed 14(3):31–40

    Google Scholar 

  • Paul R, Sharma R, Kulshrestha G, Singh SB (2009) Analysis of metsulfuron-methyl residues in wheat field soil: a comparison of HPLC and bioassay techniques. Pest Manag Sci 65(9):963–968

    Article  CAS  PubMed  Google Scholar 

  • Peshin R (2014) Integrated pest management. Springer, Dordrecht

    Book  Google Scholar 

  • Peshin R, Dhawan AK, Vatta K, Singh K (2007) Attributes and socio-economic dynamics of adopting Bt cotton. Econ Pol Wkly 42:73–80

    Google Scholar 

  • Pocket Book of Agricultural Statistics (2019) Ministry of Agriculture & farmers welfare, Govt of India, p 26

    Google Scholar 

  • Rajendran RB, Venugopalan VK, Ramesh R (1999) Pesticide residues in air from coastal environment, South India. Chemosphere 39(10):1699–1706

    Article  CAS  PubMed  Google Scholar 

  • Rao AS, Jha P, Meena BP, Biswas AK, Lakaria, BL, Patra AK (2017) Nitrogen processes in agroecosystems of India. In: Abrol YP, Adhya TK, Aneja VP, Raghuram N, Pathak H, Kulshrestha U, Sharma Chhemendra, Singh B (eds) The Indian nitrogen assessment, Elsevier, Amsterdam, pp. 59–76

    Google Scholar 

  • Rao K (2014) Site–specific integrated nutrient management for sustainable rice production and growth. Rice knowledge management portal (RKMP), Directorate of Rice Research, Hyderabad, India

    Google Scholar 

  • Restuccia D, Tao Y, Dennis ZX (2008) Agriculture and aggregate productivity: a quantitative cross country analysis. J Monet Econ 55(2):234–250

    Article  Google Scholar 

  • Ridolfi AS, Alvarez GB, Rodriguez-Giraul ME (2014) Organochlorionated contaminants in general population of Aggentina and other latinAmewrical countries. In: Alvarez A, Polti M (eds) Bioremediation in Latin America. Current research and perspective. Springer, Cham, pp 17–40

    Chapter  Google Scholar 

  • Rietra RPJJ, Heinen M, Dimkpa CO, Bindraban PS (2017) Effects of nutrient antagonism and synergism on yield and fertilizer use efficiency. Commun Soil Sci Plant Anal 48:1895–1920. https://doi.org/10.1080/00103624.2017.1407429

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Rehman MZ, Malik S, Adrees M, Qayyum MF, Alamri SA, Alyemeni MN, Ahmad P (2019) Effect of foliar applications of silicon and titanium dioxide nanoparticles on growth, oxidative stress, and cadmium accumulation by rice (Oryza sativa). Acta Physiol Plant 41:35. https://doi.org/10.1007/s11738-019-2828-7

    Article  CAS  Google Scholar 

  • Roberts T (2007) Right product, right rate, right time and right place... the foundation of best management practices for fertilizer. In: Krauss A, Isherwood K, Heffer P (eds) Fertilizer best management practices. IFA, Paris, pp 29–32

    Google Scholar 

  • Rossi L, Fedenia LN, Sharifan H, Ma X, Lombardini L (2019) Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiol Biochem 135:160–166. https://doi.org/10.1016/j.plaphy.2018.12.005

    Article  CAS  PubMed  Google Scholar 

  • Sankaran T (1987) Biological control in integrated pest control – progress and perspectives in India. In: Proceedings of the national symposium on integrated pest control progress and perspectives. Trivandrum, pp 151–158

    Google Scholar 

  • Savci S (2012) Investigation of effect of chemical fertilizers on environment. APCBEE Procedia 1:287–292

    Article  CAS  Google Scholar 

  • Shang Y, Hasan MK, Ahammed GJ, Li M, Yin H, Zhou J (2019) Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24:2558. https://doi.org/10.3390/molecules24142558

    Article  CAS  PubMed Central  Google Scholar 

  • Sharma A, Kumar V, Shahzad B, Tanveer M, Sidhu GPS, Handa N, Kohli SK, Yadav P, Bali AS, Parihar RD, Dar OI, Singh K, Jasrotia S, Bakshi P, Ramkrishnan M, Kumar S, Bhardwaj R, Thukral AK (2019) Worldwide pesticide usage and its impacts on ecosystem. SN Appl Sci 1:1446. https://doi.org/10.1007/s42452-019-1485-1

    Article  CAS  Google Scholar 

  • Sharma S, Tiwari K (2004) Fertilizer use in rice-wheat system in indo-Gangetic plains. In: FAI Annual seminar on Changing face of agriculture and fertilizer sector. Fertilizer Association of India, New Delhi, pp 1–25

    Google Scholar 

  • Shoji S, Delgado J, Mosier A, Miura Y (2001) Use of controlled release fertilizers and nitrification inhibitors to increase nitrogen use efficiency and to conserve air and water quality. Commun Soil Sci Plant Anal 32(7–8):1051–1070

    Article  CAS  Google Scholar 

  • Simwat G (1994) Modern concepts in insect pest management in cotton. In: Dhaliwal G, Arora R (eds) Trends in agricultural insect Pest management. Commonwealth Publisher, New Delhi, pp 186–237

    Google Scholar 

  • Singh B (2018) Are nitrogen fertilizers deleterious to soil health? Agronomy 8(4):48

    Article  Google Scholar 

  • Singh CJ, Thind HS, Manchanda JS, Kansal BD (2009) Effect of coal fly ash on crop yield and soil health under cotton-wheat cropping sequence. Environ Ecol 27:519–523

    CAS  Google Scholar 

  • Singh D, Singh SK, Modi A, Singh PK, Zhimo VY, Kumar A (2020) Impacts of agrochemicals on soil microbiology and food quality. In: Narasimha M, Prasad V (eds) Agrochemicals detection, treatment and remediation. Butterworth-Heinemann, Oxford, pp 101–116

    Chapter  Google Scholar 

  • Singh KP, Tripathi SK (2000) Impact of environmental nutrient loading on the structure and functioning of terrestrial ecosystems. Curr Sci 79(3):316–323

    CAS  Google Scholar 

  • Sinha AK, Ghosh A, Dhar T, Bhattacharya PM, Mitra B, Rakesh SP, Paneru P, Shrestha SR, Manandhar S, Beura K, Dutta S, Rao KK PAK, Hossain A, Siddiquie N, MSH M, Chaki AK, Gathala MK, Islam MS, Dalal RC, Gaydon DS, Laing AM, Menzies NW (2019) Trends in key soil parameters under conservation agriculture- based sustainable intensification farming practices in the eastern ganga plain. Soil Res. https://doi.org/10.1071/SR19162

  • Sleutel S, De Neve S, Németh T, Tóth T, Hofman G (2006) Effect of manure and fertilizer application on the distribution of organic carbon in different soil fractions in long-term field experiments. Eur J Agron 25(3):280–288

    Article  Google Scholar 

  • Smolders AJ, Lucassen EC, Bobbink R, Roelofs JG, Lamers LP (2010) How nitrate leaching from agricultural lands provokes phosphate eutrophication in groundwater fed wetlands: the Sulphur bridge. Biogeochem 98(1–3):1–7

    Article  CAS  Google Scholar 

  • Solanelles F, Escolà A, Planas S, Rosell JR, Camp F, Gracia F (2006) An electronic control system for pesticide application proportional to the canopy width of tree crops. Biosyst Eng 95:473–481. https://doi.org/10.1016/j.biosystemseng.2006.08.004

    Article  Google Scholar 

  • Sondhia S (2008) Herbicide residues in soil, water and food chain: an Indian perspective. In: Abstract of the biennial conference of Indian Society of Weed Science held at Patna, 27–28 February 2008, pp 31–36

    Google Scholar 

  • Sondhia S (2009) Persistence of metsulfuron-methyl in paddy field and detection of its residues in crop produce. Bull Environ Contam Toxicol 83(6):799–802

    Article  CAS  PubMed  Google Scholar 

  • Sondhia S (2019) Environmental fate of herbicide use in Central India. In: Shobha S, Choudhury PP, Sharma AR (eds) Herbicide residue research in India. Springer, Singapore, pp 29–104

    Chapter  Google Scholar 

  • Srivastav AL (2020) Chemical fertilizers and pesticides: role in groundwater contamination. In: Narasimha M, Prasad V (eds) Agrochemicals detection, treatment and remediation. Butterworth-Heinemann, Oxford, pp 143–149

    Chapter  Google Scholar 

  • Srivastava G, Das A, Kusurkar TS, Roy M, Airan S, Sharma RK, Singh SK, Sarkar S, Das M (2014a) Iron pyrite, a potential photovoltaic material, increases plant biomass upon seed pretreatment. Mater Express 4:23–31. https://doi.org/10.1166/mex.2014.1139

    Article  CAS  Google Scholar 

  • Srivastava G, Das CK, Das A, Singh SK, Roy M, Kim H, Sethy M, Kumar A (2014b) Seed treatment with iron pyrite (FeS2) nanoparticles increases the production of spinach. RSC Adv 4:58495–58504. https://doi.org/10.1039/c4ra06861k

    Article  CAS  Google Scholar 

  • Statistical Database (2020) Fertilizer Association of India. https://www.faidelhi.org/general/con-npk.pdf. Accessed 20 Aug 2020

  • Subramanian K, Manikandan A, Thirunavukkarasu M, Rahale C (2015) Nano-fertilizers for balanced crop nutrition. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer, Cham, pp 69–80

    Chapter  Google Scholar 

  • Tantalaki N, Souravlas S, Roumeliotis M (2019) Data-driven decision making in precision agriculture: the rise of big data in agricultural systems. J Agric Food Inf 20:344–380. https://doi.org/10.1080/10496505.2019.1638264

    Article  Google Scholar 

  • Tekin A (2010) Variable rate fertiliser application in Turkish wheat agriculture: economic assessment. African J Agric Res 5:647–652

    Google Scholar 

  • The Times of India (2019) 10 development-oriented initiatives that fetched votes for Narendra Modi in LokSabhawlections 2019, India news - times of India. The Times of India

    Google Scholar 

  • Thind HS, Singh Y, Singh B, Singh V (2012) Land application of rice husk ash, bagasse ash and coal fly ash: effects on crop productivity and nutrient uptake in rice–wheat system on an alkaline loamy sand. Field Crop Res 135:137–144. https://doi.org/10.1016/j.fcr.2012.07.012

    Article  Google Scholar 

  • Thomas EY, Omueti JAI, Ogundayomi O (2012) The effect of phosphate fertilizer on heavy metal in soils and Amaranthus caudatus. Agric Biol J N Am 3(4):145–149

    Article  CAS  Google Scholar 

  • Thomas GA, Dalal RC, Standley J (2007) No-till effects on organic matter, pH, cation exchange capacity and nutrient distribution in a Luvisol in the semi-arid subtropics. Soil Tillage Res 94(2):295–304

    Article  Google Scholar 

  • Tilak KS, Veeraiah K, Thathaji PB, Butchiram MS (2007) Toxicity studies of butachlor to the freshwater fish Channapunctata (Bloch). J Environ Biol 28(2):485–487

    CAS  PubMed  Google Scholar 

  • Tirado R, Englande AJ, Promakasikorn L et al (2008) Use of agrochemicals in Thailand and its consequences for the environment. Green Piece Research Laboratories Technical Note

    Google Scholar 

  • Tirani MM, Madadkar Haghjou M, Ismaili A (2019) Hydroponic grown tobacco plants respond to zinc oxide nanoparticles and bulk exposures by morphological, physiological and anatomical adjustments. Funct Plant Biol 46:360. https://doi.org/10.1071/FP18076

    Article  CAS  Google Scholar 

  • Tiwari KN, Sharma SK, Singh VK, Dwivedi BS, Shukla AK (2006) Site-specific nutrient management for increasing crop productivity in India: results with rice-wheat and rice-rice system. PDFSR Modipuram and PPIC India Programme, Gurgaon, India, pp 92

    Google Scholar 

  • Treseder KK (2008) Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11(10):1111–1120

    Article  PubMed  Google Scholar 

  • Tsion K, Steven W (2019) An overview use and impact of organic and synthetic farm inputs in developed and developing countries. Afr J Food Agric Nutri Dev 19(3):14517–14540

    CAS  Google Scholar 

  • Tunstall-Pedoe H, Woodward M, Tavendale R (2004) Pesticide pollution remains severe after clean up of stockpile of obsolete pesticides at Vikuge, Tanzania. Ambio A J Hum Environ 33:503–508

    Article  Google Scholar 

  • Umar BB, Aune BJ, Johnsen HF, Lungu IO (2011) Options for improving smallholder conservation agriculture in Zambia. J Agric Sci 3(3):50–62. https://doi.org/10.5539/jas.v3n3p50

    Article  Google Scholar 

  • Velmurugan A, Dadhwal VK, Abrol YP (2008) Regional nitrogen cycle: an Indian perspective. Curr Sci 94(11):1455–1468

    CAS  Google Scholar 

  • Venkatesh P, Nithyashree ML (2014) Institutional changes in delivery of agricultural inputs and services to farm households of India. Agril Econ Res Rev 27:85–92

    Article  Google Scholar 

  • Wang S, Wang F, Gao S, Wang X (2016) Heavy metal accumulation in different rice cultivars as influenced by foliar application of nano-silicon. Water Air Soil Pollut 227:1–13. https://doi.org/10.1007/s11270-016-2928-6

    Article  CAS  Google Scholar 

  • WHO (2004) Guidelines for drinking-water quality: recommendations. World Health Organization, Geneva

    Google Scholar 

  • Yan P, Wu L, Wang D, Fu J, Shen C, Li X, Zhang L, Zhang L, Fan L, Wenyan H (2020) Soil acidification in Chinese tea plantations. Sci Total Environ 715:136963

    Article  CAS  PubMed  Google Scholar 

  • Zamora AL (2016) Los OMG’s lograronen 2014 un increment medio de losingresos de losagricultores de 90 euros hectare. FundacionAntama. Consultado el 25 de Noviembre de 2016. Disponsibleen, www.fundacion-altama.org

  • Zhang W (2018) Global pesticide use: profile, trend, cost/benefit and more. Proc Int Acad Ecol Environ Sci 8(1):1–27

    Google Scholar 

  • Zhao X, Wang S, Xing G (2014) Nitrification, acidification, and nitrogen leaching from subtropical cropland soils as affected by rice straw-based biochar: laboratory incubation and column leaching studies. J Soil Sediment 14(3):471–482

    Article  CAS  Google Scholar 

  • Zobiole LH, Kremer RJ, Oliveira RS Jr, Constantin J (2011) Glyphosate affects chlorophyll, nodulation and nutrient accumulation of “second generation” glyphosate-resistant soybean (Glycine max L.). Pestic Biochem Phys 99(1):53–60

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitra, B. et al. (2021). Use of Agrochemicals in Agriculture: Alarming Issues and Solutions. In: Bhatt, R., Meena, R.S., Hossain, A. (eds) Input Use Efficiency for Food and Environmental Security. Springer, Singapore. https://doi.org/10.1007/978-981-16-5199-1_4

Download citation

Publish with us

Policies and ethics