Skip to main content

Applications of Fish Cell Cultures

  • Chapter
  • First Online:
Biotechnological Advances in Aquaculture Health Management

Abstract

Cell culture serves as a reliable and proficient tool in diverse research fields such as virology, physiology, toxicology, immunology, oncology, genetics, and pharmacology. These systems can be employed for pathogen detection, confirmation, and characterization especially of viruses. It is also applicable in the case of intracellular bacteria, myxosporean or microsporean parasites as well. Fish cell cultures have gained more popularity in recent years and have prominent roles in viral disease diagnosis. Since treatment options are limited for many viral diseases, early disease diagnosis and proactive management measures are key for successful fish health management. The ability to propagate fish viruses in vitro using cell cultures is imperative in advancing research on viruses and to facilitate disease management strategies such as vaccines and antiviral agents. Moreover, potential host range of pathogens via susceptibility to cell cultures, virus-host cell interactions, and virus localization studies using cell cultures provide a better understanding of the viral pathogenesis. Availability of suitable fish cell cultures for propagation of viruses and disease diagnosis is very limited, which is a major concern in this area. The wide array of applications exemplifies the versatility, cost-effectiveness, and high potential of fish cell cultures in various research fields. The recent swift growth observed in research employing cell cultures is definitely an outcome of the progress in this sector and also due to increasing ethical demands for reduction and replacement of animal use in research. In the near future, innovations in 3D cell culture and CRISPER-Cas9 genome editing will further enhance the research prospects of fish cell culture systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aarattuthodiyil S, Dharan V (2019) Viruses impacting the catfish industry. NWAC News 16(1):10–11

    Google Scholar 

  • Aarattuthodiyil S, Griffin MJ, Greenway T, Khoo L, Byars T, Wise DJ (2020) An orally delivered, live-attenuated Edwardsiella ictaluri vaccine efficiently protects channel catfish fingerlings against multiple Edwardsiella ictaluri field isolates. J World Aquac Soc 51(6):1354–1372

    CAS  Google Scholar 

  • Ahmed IVP, Chandra V, Parameswaran V, Venkatesan C, Shukla R, Bhonde RR, Hameed AS (2008) A new epithelial-like cell line from eye muscle of catla (Catla catla): development and characterization. J Fish Biol 72:2026–2038

    CAS  Google Scholar 

  • Ahmed VPI, Babu VS, Chandra V, Nambi KSN, Thomas J, Ramesh B, Sahul Hameed AS (2009) A new fibroblastic-like cell line from heart muscle of the Indian major carp (Catla catla): development and characterization. Aquaculture 293:180–186

    CAS  Google Scholar 

  • Alge C, Hauck S, Priglinger S, Kampik A, Ueffing M (2006) Differential protein profiling of primary versus immortalized human RPE cells identifies expression patterns associated with cytoskeletal remodeling and cell survival. J Proteome Res 5(4):862–878

    CAS  PubMed  Google Scholar 

  • Allen DD, Caviedes R, Cárdenas A, Shimahara T, Segura-Aguilar J, Caviedes P (2005) Cell lines as in vitro models for drug screening and toxicity studies. Drug Dev Ind Pharm 31:757–768

    CAS  PubMed  Google Scholar 

  • Altman PL, Dittmer DS (1972) Biology data book, vol 1, 2nd edn. Federation of American Societies for Experimental Biology, Bethesda, MD, p 519

    Google Scholar 

  • Arango MT, Quintero-Ronderos P, Castiblanco J, Montoya-Ortíz G (2013) Cell culture and cell analysis (Chapter 45). In: Anaya JM, Shoenfeld Y, Rojas-Villarraga A et al (eds) Autoimmunity: from bench to bedside. El Rosario University Press, Bogota, Colombia

    Google Scholar 

  • Arnizaut AB, Hanson LA (2011) Antibody response of channel catfish after channel catfish virus infection and following dexamethasone treatment. Dis Aquat Org 95:189–201

    CAS  Google Scholar 

  • Ashton I, Clements K, Barrow SE, Secombes CJ, Rowley AF (1994) Effects of dietary fatty acids on eicosanoid generating capacity, fatty acid composition and chemotactic activity of rainbow trout (Oncorhynchus mykiss) leucocytes. Biochim Biophys Acta 1214:253–262

    PubMed  Google Scholar 

  • Babich H, Borenfreund E (1991) Cytotoxicity and genotoxicity assays with cultured fish cells: a review. Toxicol In Vitro 5(1):91–100

    CAS  PubMed  Google Scholar 

  • Babich H, Rosenberg DW, Borenfreund E (1991) In vitro cytotoxicity studies with the fish hepatoma cell line, plhc-1. Ecotoxicol Environ Saf 21(3):327–336

    CAS  PubMed  Google Scholar 

  • Bahia H, Ashman JNE, Cawkwell L, Lind M, Monson JRT, Drew PJ, Greenman J (2002) Karyotypic variation between independently cultured strains of the cell line MCF-7 identified by multicolour fluorescence in situ hybridization. Int J Oncol 20:489–494

    CAS  PubMed  Google Scholar 

  • Bailey G, Taylor M, Selivonchick D, Eisele T, Hendricks J, Nixon J, Pawlowski N, Sinnhuber R (1982) Mechanisms of dietary modification of aflatoxin B1 carcinogenesis. Basic Life Sci 21:149–165

    CAS  PubMed  Google Scholar 

  • Ballester M, Bolonio M, Santamaria R (2019) Direct conversion of human fibroblast to hepatocytes using a single inducible polycistronic vector. Stem Cell Res Ther 10:317

    PubMed  PubMed Central  Google Scholar 

  • Balls M, Riddell RJ, Worden AN (1983) Animals and alternatives in toxicity testing. Academic Press, London, pp 175–184

    Google Scholar 

  • Balmer BF, Powers RL, Zhang TH, Lee J, Vigant F, Lee B, Jung ME, Purcell MK, Snekvik K, Aguilar HC (2017) Inhibition of an aquatic rhabdovirus demonstrates promise of a broad-spectrum antiviral for use in aquaculture. J Virol 91

    Google Scholar 

  • Balmer BF, Getchell RG, Powers RL, Lee J, Zhang T, Jung ME, Purcell MK, Snekvik K, Aguilar H (2018) Broad-spectrum antiviral JL122 blocks infection and inhibits transmission of aquatic rhabdoviruses. Virology 525:143–149

    CAS  PubMed  Google Scholar 

  • Bang FB (1960) Virus disease: some aspects of host and tissue specificity. Annu Rev Med 11:1–18

    CAS  PubMed  Google Scholar 

  • Baron S, Fons M, Albrecht T (1996) Viral pathogenesis. Medical microbiology, 4th edn. University of Texas Medical Branch, Galveston

    Google Scholar 

  • Beale AJ (1981) Cell substrate for killed poliovaccine production. Dev Biol Standard 47:19–23

    CAS  Google Scholar 

  • Bedrnik P, Vavra J (1972) Further observations on the maintenance of Encephalitozoon cuniculi in tissue culture. J Protozool 19:75S

    Google Scholar 

  • Behrens A, Schirmer K, Bols NC, Segner H (2001) Polycyclic aromatic hydrocarbons as inducers of cytochrome P4501A enzyme activity in the rainbow trout liver cell line, RTL-W1 and in primary cultures of rainbow trout hepatocytes. Environ Toxicol Chem 20:632–643

    CAS  PubMed  Google Scholar 

  • Benjaminson MA, Gilchriest JA, Lorenz M (2002) In vitro edible muscle protein production system (MPPS): stage 1, fish. Acta Astronaut 51(12):879–889

    CAS  PubMed  Google Scholar 

  • Bermejo-Nogales A, Fernández-Cruz ML, Navas JM (2017) Fish cell lines as a tool for the ecotoxicity assessment and ranking of engineered nanomaterials. Regul Toxicol Pharmacol 90:297–307

    CAS  PubMed  Google Scholar 

  • Bibila TA, Ranucci CS, Glazomitsky K, Buckland BC, Aunins JG (1994) Monoclonal antibody process development using medium concentrates. Biotechnol Prog 10:87–96

    CAS  PubMed  Google Scholar 

  • Bols NC, Lee LEJ (1991) Technology, and uses of cell culture from tissues and organs of bony fish. Cytotechnology 6:163–187

    CAS  PubMed  Google Scholar 

  • Bols NC, Yip JHK, Wolf BR (1984) Trout red blood cells treated with proteases fuse when placed on glass slides. Biosci Rep 4:65–70

    CAS  PubMed  Google Scholar 

  • Borenfreund E, Puerner JA (1985) A simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR-90). J Tissue Cult Methods 9:7–9

    Google Scholar 

  • Bouchard B, Fuller BB, Vijayasaradhi S, Houghton AN (1989) Induction of pigmentation in mouse fibroblasts by expression of human tyrosinase cDNA. J Exp Med 169:2029–2042

    CAS  PubMed  Google Scholar 

  • Bowser PR, Munson AD (1986) Seasonal variation in channel catfish virus antibody titers in adult channel catfish. Prog Fish Cult 48:198–199

    Google Scholar 

  • Bowser PR, Plumb JA (1980) Channel catfish virus: comparative replication and sensitivity of cell lines from channel catfish ovary and the brown bullhead. J Wildl Dis 16(3):451–454

    CAS  PubMed  Google Scholar 

  • Buchmann K, Nielsen CV, Bresciani J (2000) In vitro interactions between epithelial cells and Gyrodactylus derjavini. J Helminthol 74:203–208

    CAS  PubMed  Google Scholar 

  • Burdall SE, Hanby AM, Lansdown MR et al (2003) Breast cancer cell lines: friend or foe? Breast Cancer Res 5:89. https://doi.org/10.1186/bcr577

    Article  PubMed  PubMed Central  Google Scholar 

  • Burki R, Vermeirssen E, Körner O, Joris C, Burkhardt-Holm P, Segner H (2006) Assessment of estrogenic exposure in Brown Trout (Salmo trutta) in a Swiss Midland River: integrated analysis of Passive Samplers, Wild and Caged Fish, and Vitellogenin MRNA and Protein. Environ Toxicol Chem 25:2077–2086

    CAS  PubMed  Google Scholar 

  • Caminada D, Zaja R, Smital T, Fent K (2008) Human pharmaceuticals modulate P-gp1 (ABCB1) transport activity in the fish cell line PLHC-1. Aquat Toxicol 90(3):214–222

    CAS  PubMed  Google Scholar 

  • Capstick PB, Telling RC, Chapman WG, Stewart DL (1962) Growth of a cloned strain of hamster kidney cells in suspended cultures and their susceptibility to the virus of foot and mouth disease. Nature 195:1163–1164

    CAS  PubMed  Google Scholar 

  • Carrel A, Burrows MT (1911) Cultivation of tissues in vitro and its technique. J Exp Med 13(3):387–396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castaño A, Cantarino MJ, Castillo P, Tarazona JV (1996) Correlations between the RTG-2 cytotoxicity test EC50 and in vivo LC50 rainbow trout bioassay. Chemosphere 32:2141–2157

    Google Scholar 

  • Castaño A, Bols N, Braunbeck T, Dierickx P, Halder M, Isomaa B, Kawahara K, Lee L, Mothersill C, Pärt P, Repetto G, Riego Sintes J, Rufli H, Smith R, Wood C, Segner H (2003) The use of fish cells in ecotoxicology: the report and recommendations of ECVAM Workshop 47. Altern Lab Anim: ATLA 31:317–351. https://doi.org/10.1177/026119290303100314

    Article  PubMed  Google Scholar 

  • Chacon E, Acosta D, Lemasters JJ (1997) Primary cultures of cardiac myocytes as in vitro models for pharmacological and toxicological assessments. In: In vitro methods in pharmaceutical research, vol 9. The University Press, Cambridge, pp 209–223

    Google Scholar 

  • Chang N, Sun C, Gao L, Zhu D, Xu X, Zhu X, Xiong JW, Xi JJ (2013) Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res 23:465–472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SN, Kou GH (1987) Establishment, characterization and application of 14 cell lines from warm-water fish. In: Kuroda Y, Kurstak E, Maramorosch K (eds) Invertebrate and fish tissue culture. Japan Scientific Societies Press, Tokyo, pp 218–227

    Google Scholar 

  • Chen MJ, Chiou PP, Liao YH, Lin CM, Chen TT (2010) Development and characterization of five rainbow trout pituitary single-cell clone lines capable of producing pituitary hormones. J Endocrinol 205(1):69–78

    CAS  PubMed  Google Scholar 

  • Chen B, Zheng Z, Yang J, Chi H, Huang H, Gong H (2019) Development and characterization of a new cell line derived from European eel Anguilla anguilla kidney. Biol Open 8(1):bio037507. https://doi.org/10.1242/bio.037507

    Article  CAS  PubMed  Google Scholar 

  • Chiou P, Bols N, Douglas S, Chen TT (2006) Regulation of immune-relevant genes in the trout macrophage cell line RTS11 by antimicrobial peptides. Dev Comp Immunol 30:797–806

    CAS  Google Scholar 

  • Church JE, Hodgson WC (2002) The pharmacological activity of fish venoms. Toxinology 40(8):1083–1093

    CAS  Google Scholar 

  • Ciarlo CA, Zon LI (2016) Embryonic cell culture in zebrafish. Methods Cell Biol 133:1–10

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clem LW, Moewus L, Sigel M (1961) Studies with cells from marine fish in tissue culture. Proc Soc Exp Biol Med 108:762–766

    CAS  PubMed  Google Scholar 

  • Collet B, Collins C, Lester K (2018) Engineered cell lines for fish health research. Dev Comp Immunol 80:34–40

    CAS  PubMed  Google Scholar 

  • Collodi P, Kamei Y, Ernst T, Miranda C, Buhler DR, Barnes DW (1992) Culture of cells from zebrafish (Brachydanio rerio) embryo and adult tissues. Cell Biol Toxicol 8(1):43–61

    CAS  PubMed  Google Scholar 

  • Cossarini-Dunier M (1987) Effects of the pesticide atrazine, lindane, and of manganese ions on cellular immunity of carp, Cyprinus carpio. J Fish Biol 31:67–73

    CAS  Google Scholar 

  • Cossarini-Dunier M, Hattenberger AM (1988) Effects of pesticides (atrazine and lindane) on the replication of spring viremia of carp virus. Ann Rech Vet 19:209–211

    CAS  PubMed  Google Scholar 

  • Davison AJ, Eberle R, Ehlers B, Hayward G, McGeoch D, Minson A, Pellett P, Roizman B, Studdert M, Thiry E (2009) The order herpesvirales. Arch Virol 154(1):171–177

    CAS  PubMed  Google Scholar 

  • de Sena J, Rio GJ (1975) Partial purification and characterization of RTG-2 fish cell interferon. Infect Immun 11(4):815–822

    PubMed  PubMed Central  Google Scholar 

  • Dehler CE, Boudinot P, Martin SA, Collet B (2016) Development of an efficient genome editing method by CRISPR/Cas9 in a fish cell line. Mar Biotechnol 18(4):449–452

    CAS  Google Scholar 

  • Desoize B, Gimonet D, Jardiller JC (1998) Cell culture as spheroids: an approach to multicellular resistance. Anticancer Res 18(6a):4147–4158

    CAS  PubMed  Google Scholar 

  • Desportes-Livage I, Chilmonczyk S, Hedrick R, Ombrouck C, Monge D, Maiga I, Gentilini M (1996) Comparative development of two microsporidian species: Enterocytozoon bieneusi and Enterocytozoon salmonis, reported in AIDS patients and salmonid fish, respectively. J Eukaryot Microbiol 43(1):49–60

    CAS  PubMed  Google Scholar 

  • Dharan V, Khoo L, Phelps NB, Kumar G, Steadman J, Bosworth B, Aarattuthodi S (2021) An investigation into the pathogenesis of blue catfish alloherpesvirus in ictalurid catfish. J World Aquacult Soc. https://doi.org/10.1111/jwas.12850

  • Dishon A (2009) Back passage/shed assay for cyprinid herpes virus type 3 modified live virus according to VS Memorandum No. 800.201. Kovax Ltd

    Google Scholar 

  • Dixon P (1988) Immunization with viral antigens: viral diseases of carp and catfish. Dev Biol Stand 90:221–232

    Google Scholar 

  • Driever W, Rangini Z (1993) Characterization of a cell line derived from zebrafish (Brachydanio rerio) embryos. In Vitro Cell Dev Biol 29A(9):749–754

    CAS  Google Scholar 

  • Dumont J, Euwart D, Mei B, Estes S, Kshirsagar R (2016) Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol 36(6):1110–1122

    CAS  PubMed  Google Scholar 

  • Etoh H, Suyama I, Hyodo-Taguchi Y, Matsudaira H (1987) Establishment and characteristics of various cell lines from medaka (Teleostei). In: Kuroda Y, Kurstak E, Maramorosch K (eds) Invertebrate and fish tissue culture. Japan Scientific Societies Press, Tokyo, pp 266–269

    Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    CAS  PubMed  Google Scholar 

  • Faber MN, Sojan JM, Saraiva M, van West P, Secombes CJ (2021) Development of a 3D spheroid cell culture system from fish cell lines for in vitro infection studies: evaluation with Saprolegnia parasitica. J Fish Dis 44(6):701–710. https://doi.org/10.1111/jfd.13331

    Article  CAS  PubMed  Google Scholar 

  • Fent K (2001) Fish cell lines as versatile tools in ecotoxicology: assessment of cytotoxicity, cytochrome P4501A induction potential and estrogenic activity of chemicals and environmental samples. Toxicol In Vitro 15(4-5):477–488

    CAS  PubMed  Google Scholar 

  • Fierro-Castro C, Barrioluengo L, López-Fierro P, Razquin BE, Villena AJ (2013) Fish cell cultures as in vitro models of inflammatory responses elicited by immunostimulants. Expression of regulatory genes of the innate immune response. Fish Shellfish Immunol 35(3):979–987

    CAS  PubMed  Google Scholar 

  • Fijan NN (1968) Progress report on acute mortality of channel catfish fingerlings caused by a virus. Bull Off Int Epizoot 69(7):1167–1168

    CAS  PubMed  Google Scholar 

  • Fijan N, Sulimanović D, Bearzotti M, Muzinić D, Zwillenberg LO, Chilmonczyk S, Vautherot JF, de Kinkelin P (1983) Some properties of the Epithelioma papulosum cyprini (EPC) cell line from carp Cyprinus carpio. Ann Inst Pasteur Virol 134(2):207–220

    PubMed Central  Google Scholar 

  • Ford L, Subramaniam K, Waltzek TB, Bowser PR, Hanson L (2021) Cytochrome oxidase gene sequencing reveals channel catfish ovary cell line is contaminated with brown bullhead cells. J Fish Dis 44:119–122

    CAS  PubMed  Google Scholar 

  • Friedenreich H, Schartl M (1990) Transient expression directed by homologous and heterologous promoter and enhancer sequences in fish cells. Nucleic Acids Res 18:3299–3305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fryer JL, Lannan CN (1996) Rickettsial infections of fish. Annu Rev Fish Dis 6:3–13

    Google Scholar 

  • Ganassin RC, Bols NC (1998) Development of a monocyte/macrophage-like cell line, RTS11, from rainbow trout spleen. Fish Shellfish Immunol 8(6):457–476

    Google Scholar 

  • Ghioni C, Tocher DR, Bell MV, Dick JR, Sargent JR (1999) Low C18 to C20 fatty acid elongase activity and limited conversion of stearidonic acid, 18:4(n-3), to eicosapentaenoic acid, 20:5(n-3), in a cell line from the turbot, Scophthalmus maximus. Biochim Biophys Acta 1437:170–181

    CAS  PubMed  Google Scholar 

  • Ghosh C, Collodi P (1994) Culture of cells from zebrafish (Brachydanio rerio) blastula-stage embryos. Cytotechnology 14(1):21–26

    CAS  PubMed  Google Scholar 

  • Gratacap RL, Regan T, Dehler CE (2020) Efficient CRISPR/Cas9 genome editing in a salmonid fish cell line using a lentivirus delivery system. BMC Biotechnol 20:35

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grist E, Woodhead AD, Carlson C (1986) Established cell lines from nonmammalian vertebrates: models for DNA repair studies. In Vitro Cell Dev Biol 22:677–680

    CAS  PubMed  Google Scholar 

  • Grondel JL, Gloudemans AG, van Muiswinkel WB (1985) The influence of antibiotics on the immune system. II. Modulation of fish leukocyte responses in culture. Vet Immunol Immunopathol 9(3):251–260

    CAS  PubMed  Google Scholar 

  • Hanif A, Bakopoulos V, Leonardos I, Dimitriadis GJ (2005) The effect of sea bream (Sparus aurata) broodstock and larval vaccination on the susceptibility by Photobacterium damsela subsp. piscicida and on the humoral immune parameters. Fish Shellfish Immunol 19(4):345–361

    CAS  PubMed  Google Scholar 

  • Hanson L, Dishon A, Kotler M (2011) Herpesviruses that infect fish. Viruses 3(11):2160–2191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hao K, Yuan S, Yu F, Chen XH, Bian WJ, Feng YH, Zhao Z (2021) Acyclovir inhibits channel catfish virus replication and protects channel catfish ovary cells from apoptosis. Virus Res 292:198249

    CAS  PubMed  Google Scholar 

  • Hayasaka K, Sato M, Mitani H, Shima A (1989) Transfection of cultured fish cells RBCF-1 with exogenous oncogene and their resistance to malignant transformation. Comp Biochem Physiol 96(2):349–354

    Google Scholar 

  • Hayasaka K, Sato M, Mitani H, Shima A (1990) Transfection of cultured fish cells RBCF-1 with exogenous oncogene and their resistance to malignant transformation. Comp Biochem Physiol B 96(2):349–354

    CAS  PubMed  Google Scholar 

  • Hayman JR, Lobb CJ (1993) Immunoglobulin in the eggs of the channel catfish (Ictalurus punctatus). Dev Comp Immunol 17(3):241–248

    CAS  PubMed  Google Scholar 

  • Hayward SW, Dahiya R, Cunha GR, Bartek J, Deshpande N, Narayan P (1995) Establishment and characterization of an immortalized but non-transformed human prostate epithelial cell line: BPH-1. In Vitro Cell Dev Biol 31(1):14–24

    CAS  Google Scholar 

  • Hedrick RP, McDowell T (1987) Passive transfer of sera with antivirus neutralizing activity from adult channel catfish protects juveniles from channel catfish virus. Trans Am Fish Soc 116:277–281

    Google Scholar 

  • Hedrick R, Gilad O, Yun S, Spangenberg J, Marty G, Nordhausen R, Kebus M, Bercovier H, Eldar A (2000) A herpesvirus associated with mass mortality of Juvenile and Adult Koi, a strain of common carp. J Aquat Anim Health 12:44–57

    CAS  PubMed  Google Scholar 

  • Heilmann S, Ratnakumar K, Langdon E, Kansler E, Kim I, Campbell NR, Perry E, McMahon A, Kaufman C, van Rooijen E, Lee W, Iacobuzio-Donahue C, Hynes R, Zon L, Xavier J, White RM (2015) A quantitative system for studying metastasis using transparent zebrafish. Cancer Res 75(20):4272–4282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hellberg T, Paßvogel L, Schulz KS, Klupp BG, Mettenleiter TC (2016) Nuclear egress of herpesviruses: the prototypic vesicular nucleocytoplasmic transport. Adv Virus Res 94:81–140

    CAS  PubMed  Google Scholar 

  • Helmrich A, Bailey G, Barnes DW (1988) Transfection of cultured fish cells with exogenous DNA. Cytotechnology 1:215–222

    CAS  PubMed  Google Scholar 

  • Hetrick FM, Hedrick RP (1993) New viruses described in finfish from 1988–1992. Annu Rev Fish Dis 3:187–207

    PubMed  PubMed Central  Google Scholar 

  • Higaki S, Koyama Y, Shimada M, Ono Y, Tooyama I, Fujioka Y, Sakai N, Ikeuchi T, Takada T (2013) Response to fish specific reproductive hormones and endocrine-disrupting chemicals of a Sertoli cell line expressing endogenous receptors from an endemic cyprinid Gnathopogon caerulescens. Gen Comp Endocrinol 191:65–73

    CAS  PubMed  Google Scholar 

  • Hightower LE, Renfro JL (1988) Recent applications of fish cell culture to biomedical research. J Exp Zool 248:290–302

    CAS  PubMed  Google Scholar 

  • Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA (2010) Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 148(1):3–15

    CAS  PubMed  Google Scholar 

  • Hong Y, Winkler C, Schart M (1996) Pluripotency and differentiation of embryonic stem cell lines from the medaka fish (Oryzias latipes). Mech Dev 60(1):33–44

    CAS  PubMed  Google Scholar 

  • Hong Y, Liu T, Zhao H, Xu H, Wang W, Liu R, Chen T, Deng J, Gui J (2004) Establishment of a normal medaka fish spermatogonial cell line capable of sperm production in vitro. Proc Natl Acad Sci U S A 101(21):8011–8016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong N, Li Z, Hong Y (2011) Fish stem cell cultures. Int J Biol Sci 7(4):392–402

    PubMed  PubMed Central  Google Scholar 

  • Horbach SPJM, Halffman W (2017) The ghosts of HeLa: how cell line misidentification contaminates the scientific literature. PLoS One 12(10):e0186281

    PubMed  PubMed Central  Google Scholar 

  • Howe K, Clark M, Torroja C (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsiao AY, Torisawa YS, Tung YC, Sud S, Taichman RS, Pienta KJ (2009) Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids. Biomaterials 30(16):3020–3027

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsiung GD (1984) Diagnostic virology: from animals to automation. Yale J Biol Med 57:727–733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YC, Han YS (2010) Anti-nervous necrosis virus drug screening using fish cell line. Conference: The American Society for Virology 29th annual meeting at: Bozeman, MT, USA, July 2010

    Google Scholar 

  • Hughes P, Marshall D, Reid Y, Parkes H, Gelber C (2007) The costs of using unauthenticated, over-passaged cell lines: how much more data do we need? BioTechniques 43(5):575–581

    CAS  PubMed  Google Scholar 

  • Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JRJ, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Isa K, Shima A (1987) Transfection and stable expression of a dominant selective marker Ecogpt in a cultured cell line of the fish, Carassius auratus. J Cell Sci 88:219–224

    CAS  Google Scholar 

  • Jabbour RE, Snyder AP (2014) Mass spectrometry-based proteomics techniques for biological identification. Biological Identification: DNA Amplification and Sequencing, Optical Sensing, Lab-On-chip and Portable Systems 1(14):370–430

    Google Scholar 

  • Jacobson M, Gase RM (1965) Selection of appropriate tectal connections by regenerating optic fibers in adult goldfish. Exp Neurol 13(4):418–430

    CAS  PubMed  Google Scholar 

  • Jensen I, Larsen R, Robertsen B (2002) An antiviral state induced in Chinook salmon embryo cells (CHSE-214) by transfection with the double-stranded RNA poly I:C. Fish Shellfish Immunol 13:367–378

    CAS  PubMed  Google Scholar 

  • Kaur G, Dufour JM (2012) Cell lines: valuable tools or useless artifacts. Spermatogenesis 2(1):1–5

    PubMed  PubMed Central  Google Scholar 

  • Kelly RK, Souter BW, Miller HR (1978) Fish cell lines: comparison of CHSE-214, FAIM., and RAG-2 in assaying IHN and IPN viruses. J Fish Res Board Can 35:1009–1011

    Google Scholar 

  • Kenny PA, Lee GY, Myers CA, Neve RM, Semeiks JR, Spellman PT (2007) The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol Oncol 1(1):84–96

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kienzler A, Bony S, Tronchere X, Devaux A (2013) Assessment of base-excision repair activity in fish cell lines: toward a new biomarker of exposure to environmental contaminants? Mut Res 753(2):107–113

    CAS  Google Scholar 

  • Kim JH, Ogawa K, Wakabayashi H (2000) Lectin-reactive components of the microsporidian Glugea plecoglossi and their relation to spore phagocytosis by head kidney macrophages of ayu Plecoglossus altivelis. Dis Aquat Org 39(1):59–63

    Google Scholar 

  • Klingelfus T, Disner GR, Voigt CL, Alle LF, Cestari MM, Leme DM (2019) Nanomaterials induce DNA-protein crosslink and DNA oxidation: a mechanistic study with RTG-2 fish cell line and comet assay modifications. Chemosphere 215:703–709

    CAS  PubMed  Google Scholar 

  • Knudsen FR, Schou AE, Wiborg ML, Mona E, Tollefsen K, Stenersen J, Sumpter JP (1997) Increase of plasma vitellogenin concentration in rainbow trout (Oncorhynchus mykiss) exposed to effluents from oil refinery treatment works and municipal sewage. Bull Environ Contam Toxicol 59(5):802–806. https://doi.org/10.1007/s001289900552

    Article  CAS  PubMed  Google Scholar 

  • Kou GH, Wang CH, Hung HW, Jang YS, Chou CM, Lo CF (1995) A cell line (EP-1 cell line) derived from “Beko disease” affected Japanese eel elver (Anguilla japonica) persistently infected with Pleistophora anguillarum. Aquaculture 132:161–173

    Google Scholar 

  • Krishnan K, Khanna VG, Hameed S (2010) Antiviral activity of dasyscyphin C extracted from Eclipta prostrata against fish nodavirus. J Antivirals Antiretrovirals 1:029–032

    Google Scholar 

  • Ku CC, Teng YC, Wang CS, Lu CH (2009) Establishment and characterization of three cell lines derived from the rockfish grouper Epinephelus quoyanus: use for transgenic studies and cytotoxicity testing. Aquaculture 294:147–151

    CAS  Google Scholar 

  • Lakra WS, Swaminathan TR, Joy KP (2011) Development, characterization, conservation and storage of fish cell lines: a review. Fish Physiol Biochem 37(1):1–20

    CAS  PubMed  Google Scholar 

  • Lannan CN (1994) Fish cell culture: a protocol for quality control. J Tissue Cult Methods 16:95–98

    Google Scholar 

  • Lee LEJ, Clemons JH, Bechtel DG, Caldwell SJ, Han KB, Pasitschniak-Arts M, Mosser DD, Bols NC (1993) Development and characterization of a rainbow trout liver cell line expressing cytochrome P450-dependent monooxygenase activity. Cell Biol Toxicol 9:279–294

    CAS  PubMed  Google Scholar 

  • Leibovitz A (1963) The growth and maintenance of tissue-cell cultures in free gas exchange with the atmosphere. Am J Hyg 78:173–180

    CAS  PubMed  Google Scholar 

  • Leland DS, Ginocchio CC (2007) Role of cell culture for virus detection in the age of technology. Clin Microbiol Rev 20:49–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leme DM (2019) Nanomaterials induce DNA-protein crosslink and DNA oxidation: a mechanistic study with RTG-2 fish cell line and comet assay modifications. Chemosphere 215:703–709

    PubMed  Google Scholar 

  • Lescat L, Véron V, Mourot B, Péron S, Chenais N, Dias K, Riera-Heredia N, Beaumatin F, Pinel K, Priault M, Panserat S, Salin B, Guiguen Y, Bobe J, Herpin A, Seiliez I (2020) Chaperone-mediated autophagy in the light of evolution: insight from fish. Mol Biol Evol 37(10):2887–2899

    CAS  PubMed  Google Scholar 

  • Liu Q, Yuan Y, Zhu F, Hong Y, Ge R (2018) Efficient genome editing using CRISPR/Cas9 ribonucleoprotein approach in cultured Medaka fish cells. Biol Open 7(8):bio035170. https://doi.org/10.1242/bio.035170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loessner D, Stok KS, Lutolf MP, Hutmacher DW, Clements JA, Rizzi SC (2010) Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials 31(32):8494–8506

    CAS  PubMed  Google Scholar 

  • Loveland PM, Wilcox JS, Pawlowski NE, Bailey GS (1987) Metabolism and DNA binding of aflatoxicol and aflatoxin B1 in vivo and in isolated hepatocytes from rainbow trout (Salmo gairdneri). Carcinogenesis 8:1065–1070

    CAS  PubMed  Google Scholar 

  • Lovitt CJ, Shelper TB, Avery VM (2014) Advanced cell culture techniques for cancer drug discovery. Biology 3(2):345–367

    PubMed  PubMed Central  Google Scholar 

  • Luginbuhl RE, Black FL (1961) Applications of primary cell cultures in the study of animal viruses: I. The isolation and characterization of bovine and avian enteric viruses. Yale J Biol Med 33(5):339–349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lynn DE (2009) Cell culture. In: Encyclopedia of insects, 2nd edn, pp 144–145

    Google Scholar 

  • Ma J, Fan Y, Zhou Y, Liu W, Jiang N, Zhang J, Zeng L (2018) Efficient resistance to grass carp reovirus infection in JAM-A knockout cells using CRISPR/Cas9. Fish Shellfish Immunol 76:206–215

    CAS  PubMed  Google Scholar 

  • Ma J, Bruce TJ, Jones EM, Cain KD (2019) A review of fish vaccine development strategies: conventional methods and modern biotechnological approaches. Microorganisms 7(11):569

    CAS  PubMed Central  Google Scholar 

  • MacLeod RA, Dirks WG, Matsuo Y, Kaufmann M, Milch H, Drexler HG (1999) Widespread intraspecies cross-contamination of human tumor cell lines arising at source. Int J Cancer 83(4):555–563

    CAS  PubMed  Google Scholar 

  • Maguire G (2016) Therapeutics from adult stem cells and the hype curve. ACS Med Chem Lett 7(5):441–443

    CAS  PubMed  Google Scholar 

  • Mano Y, Kator K, Egami N (1982) Photoreactivation and excision repair of thymine dimers in ultraviolet irradiated cultured fish cells. J Radiat Res 90:731–737

    Google Scholar 

  • Marecki JC, Aarattuthodiyil S, Byrd AK, Penthala NR, Crooks PA, Kevin D, Raney KD (2019) N-Naphthoyl-substituted indole thio-barbituric acid analogs inhibit the helicase activity of the hepatitis C virus NS3. Bioorg Med Chem Lett 29(3):430–434

    CAS  PubMed  Google Scholar 

  • Masters J (2002) False cell lines: the problem and a solution. Cytotechnology 39:69–74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masters JRW, Thomson JA, Daly-Burns B, Reid YA, Dirks WG, Packer P, Toji LH, Ohno T, Tanabe H, Arlett CF, Kelland LR, Harrison M, Virmani A, Ward TH, Ayres KL, Debenham PG (2001) Short tandem repeat profiling provides an international reference standard for human cell lines. Proc Natl Acad Sci U S A 98:8012–8017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto J, Lynch TJ, Grabowski S, Richards CM, Lo SJ, Clark C, Kern D, Taylor JD, Tchen IT (1983) Fish tumor pigment cells: differentiation and comparison to their normal counterparts. Am Zool 23(3):569–580

    CAS  Google Scholar 

  • Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Physiol 247:125–142

    Google Scholar 

  • McIntosh D, Flaño E, Grayson TH, Gilpin ML, Austin B, Villena AJ (1997) Production of putative virulence factors by Renibacterium salmoninarum grown in cell culture. Microbiology 143:3349–3356

    CAS  PubMed  Google Scholar 

  • McKeehan W, Barnes D, Reid L, Stanbridge E, Murakami H, Sato G (1990) Frontiers in mammalian cell culture. In Vitro Cell Dev Biol 26(1):9–23

    CAS  PubMed  Google Scholar 

  • Mehta G, Hsiao AY, Ingram M, Luker GD, Takayama S (2012) Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release 164:192–204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merten OW (2006) Introduction to animal cell culture technology—past, present and future. Cytotechnology 50:1–7

    PubMed  PubMed Central  Google Scholar 

  • Meyers TR (1979) A reo-like virus isolated from the juvenile American oyster (Crassostrea virginica). J Gen Virol 43:203–212

    Google Scholar 

  • Miller RK (2020) A 2020 synopsis of the cell-cultured animal industry. Anim Front 10(4):64–72

    PubMed  PubMed Central  Google Scholar 

  • Miller NW, Rycyzyn MA, Wilson MR, Warr GW, Naftel JP, Clem LW (1994) Development and characterization of channel catfish long term B cell lines. J Immunol 152:2180–2189

    CAS  PubMed  Google Scholar 

  • Miserocchi G, Mercatali L, Liverani C (2017) Management and potentialities of primary cancer cultures in preclinical and translational studies. J Transl Med 15:229

    PubMed  PubMed Central  Google Scholar 

  • Mitani H (1984) Comparison of the radiosensitivity between three cultured fish cell lines using shortterm endpoints. Int J Radiat Biol 45:637–643

    CAS  Google Scholar 

  • Mitani H (1986) Radiosensitivity of primary cultured fish cells with different ploidy. J Radiat Res 27:284–290

    CAS  PubMed  Google Scholar 

  • Mitani H, Egami N (1980) Long-term cultivation of the medaka (Oryzias latipes) cells from liver tumors induced by diethylnitrosamine. J Fac ScL Univ Tokyo Sec IV 14:391–398

    Google Scholar 

  • Mitani H, Egami N (1982) Rejoining of DNA strand breaks after gamma-irradiation in cultured fish cells, CAF-MM1. Int J Radiat Biol 41:85–90

    CAS  Google Scholar 

  • Mitani H, Naruse K, Shima A (1989) Eurythermic and stenothermic growth of cultured fish cells and their thermosensitivity. J Cell Sci 93:731–737

    PubMed  Google Scholar 

  • Mitani H, Komura JI, Shima A (1990) The repair of UV-irradiated plasmids transfected into cultured fish cells. Mut Res 236:77–84

    CAS  Google Scholar 

  • Miyazaki T, Goto K, Kobayashi T, Kageyama T, Miyata M (1999) Mass mortalities associated with a virus disease in Japanese pearl oyster Pinctada fucata martensii. Dis Aquat Org 37:1–12

    Google Scholar 

  • Mor A, Avtalion RR (1990) Transfer of antibody-activity from immunized mother to embryo in tilapias. J Fish Biol 37(2):249–255

    Google Scholar 

  • Mori S, Sakakura E, Tsunekawa Y, Hagiwara M, Suzuki T, Eirakuet M (2019) Self-organized formation of developing appendages from murine pluripotent stem cells. Nat Commun 10:3802

    PubMed  PubMed Central  Google Scholar 

  • Morin G, Pinel K, Dias K, Seiliez I, Beaumatin F (2020) RTH-149 cell line, a useful tool to decipher molecular mechanisms related to fish nutrition. Cell 9(8):1754

    CAS  Google Scholar 

  • Nakada N, Nyunoya H, Nakamura M, Hara A, Iguchi T, Takada H (2004) Identification of estrogenic compounds in wastewater effluent. Environ Toxicol Chem 23:2807–2815

    PubMed  Google Scholar 

  • Nelson-Rees WA, Daniels DW, Flandermeyer RR (1981) Cross-contamination of cells in culture. Science 212(4493):446–452

    CAS  PubMed  Google Scholar 

  • Nicholson BL (1989) Fish cell culture: an update. Adv Cell Cult 7:1–18

    CAS  Google Scholar 

  • Nielsen CV, Buchmann K (2000) Prolonged in vitro cultivation of Ichthyophthirius multifiliis using an EPC cell line as substrate. Dis Aquat Org 42:215–219

    CAS  Google Scholar 

  • Noga EJ, Hartmann JX (1981) Establishment of walking catfish (Clarius batrachus) cell lines and development of a channel catfish (Ictalurus punctatus) virus vaccine. Can J Fish Aquat Sci 38:925–930

    Google Scholar 

  • Novaro V, Roskelley CD, Bissell MJ (2003) Collagen-IV and laminin-1 regulate estrogen receptor α expression and function in mouse mammary epithelial cells. J Cell Sci 116(14):2975–2986

    CAS  PubMed  Google Scholar 

  • Nusbaum KE, Smith BF, DeInnocentes P, Bird RC (2002) Protective immunity induced by DNA vaccination of channel catfish with early and late transcripts of the channel catfish herpesvirus. Vet Immunol Immunopathol 84:151–168

    CAS  PubMed  Google Scholar 

  • Officer JE (1964) The ability of a fish cell line to support the growth of mammalian viruses. Proc Soc Exp Biol Med 116:190–194

    CAS  PubMed  Google Scholar 

  • Olsson PE, Hyllner SJ, Zafarullah M, Andersson T, Gedamu L (1990) Differences in metallothionein gene expression in primary cultures of rainbow trout hepatocytes and the RTH-149 cell line. Biochim Biophys Acta 1049(1):78–82

    CAS  PubMed  Google Scholar 

  • Olsen AB, Melby HP, Speilberg L, Evensen Ø, Hastein T (1997) Piscirickettsia salmonis infection in Atlantic salmon Salmo salar in Norway-epidemiological, pathological and microbiological findings. Dis Aquat Org 31:35–48

    Google Scholar 

  • Ong SM, Zhao Z, Arooz T, Zhao D, Zhang S, Du T (2010) Engineering a scaffold-free 3D tumor model for in vitro drug penetration studies. Biomaterials 31(6):1180–1190

    CAS  PubMed  Google Scholar 

  • Ortiz E, Gurrola GB, Schwartz EF, Possani LD (2015) Scorpion venom components as potential candidates for drug development. Toxinology 93:125–135

    CAS  Google Scholar 

  • Ott T (2004) Tissue culture of fish cell lines. The National Wild Fish Health Survey (NWFHS) Laboratory Procedure Manual 2(10):1–16

    Google Scholar 

  • Pampaloni F, Reynaud EG, Stelzer EHK (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8(10):839–845

    CAS  PubMed  Google Scholar 

  • Pan C, Kumar C, Bohl S, Klingmueller U, Mann M (2009) Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Mol Cell Proteomics 8(3):443–450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey G (2013) Overview of fish cell lines and their uses. Int J Pharm Res Sci 2(3):580–590

    Google Scholar 

  • Pandey S, Upadhyay RK (2020) The fish venom toxins: natural source of pharmaceuticals and therapeutic agents “pharmaceutical and therapeutic uses of fish venom toxins”. Int J Pharm Pharm Sci 12(11):1–14

    CAS  Google Scholar 

  • Parameswaran P, Ahmed VP, Shukla R, Bhonde RR, Sahul Hameed AS (2007) Development and characterization of two new cell lines from milkfish (Chanos chanos) and grouper (Epinephelus coioides) for virus isolation. Mar Biotechnol 9:281–291

    CAS  Google Scholar 

  • Park EH, Lee JS, Yi AE, Etoh H (1989) Fish cell line (ULF-23HU) derived from the fin of the central mudminnow (Umbra limi): suitable characteristics for clastogenicity assay. In Vitro Cell Dev Biol 25:987–994

    Google Scholar 

  • Paw BH, Zon LI (1999) Primary fibroblast cell culture. Methods Cell Biol 59:39–43

    CAS  PubMed  Google Scholar 

  • Pelissero C, Flouriot G, Foucher JL, Bennetau B, Dunogues J, Le GF, Sumpter JP (1993) Vitellogenin synthesis in cultured hepatocytes; an in vitro test for the estrogenic potency of chemicals. J Steroid Biochem Mol Biol 44:263–272

    CAS  PubMed  Google Scholar 

  • Peng CA, Wang CH, Wang WL (2010) Rapid antiviral assay using QD-tagged fish virus as imaging nanoprobe. J Virol Methods 169(2):412–415

    CAS  PubMed  Google Scholar 

  • Perelberg A, Ronen A, Hutoran M, Smith Y, Kotler M (2005) Protection of cultured Cyprinus carpio against a lethal viral disease by an attenuated virus vaccine. Vaccine 23:3396–3403

    CAS  PubMed  Google Scholar 

  • Pham AK, Durocher Y (2006) Large-scale transfection of mammalian cells for the fast production of recombinant protein. Mol Biotechnol 34:225–237

    CAS  PubMed  Google Scholar 

  • Pickl M, Ries CH (2008) Comparison of 3D and 2D tumor models reveals enhanced HER2 activation in 3D associated with an increased response to trastuzumab. Oncogene 28(3):461–468

    PubMed  Google Scholar 

  • Plumb JA (1986) Channel catfish virus disease. US fish and wildlife publications. Fish Dis Leaflet 73:1–7

    Google Scholar 

  • Potter G, Smith AST, Vo NTK, Muster J, Weston W, Bertero A, Maves L, Mack DL, Rostain A (2020) A more open approach is needed to develop cell-based fish technology: it starts with zebrafish. One Earth 3(1):54–64

    Google Scholar 

  • Purdom CE, Hardiman PA, Bye VJ, Eno NC, Tyler CR, Sumpter JP (1994) Estrogenic effects of effluents from sewage treatment works. Chem Ecol 8:275–285

    CAS  Google Scholar 

  • Puschhof J, Post Y, Beumer J, Kerkkamp HM, Bittenbinder M, Vonk FJ, Casewell NR, Richardson MK, Clevers H (2021) Derivation of snake venom gland organoids for in vitro venom production. Nat Protoc 16(3):1494–1510. https://doi.org/10.1038/s41596-020-00463-4

    Article  CAS  PubMed  Google Scholar 

  • Qin QW, Wu TH, Jia TL, Hegde A, Zhang RQ (2006) Development and characterization of a new tropical marine fish cell line from grouper, Epinephelus coioides susceptible to iridovirus and nodavirus. J Virol Methods 131:58–64

    CAS  PubMed  Google Scholar 

  • Quiot JM, Vey A, Vago C (1985) Effect of mycotoxins on invertebrate cells in vitro. Adv Cell Cult 4:199–212

    CAS  Google Scholar 

  • Rachlin JW, Perlmutter A (1968) Fish cells in culture for study of aquatic toxicants. Water Res 2(6):409–414

    Google Scholar 

  • Rapanan JL, Pascual AS, Uppalapati CK, Cooper KE, Leyva KJ, Hull EE (2015) Zebrafish keratocyte explants to study collective cell migration and reepithelialization in cutaneous wound healing. J Vis Exp 96:52489

    Google Scholar 

  • Rausch DM, Simpson SB (1988) In vivo test system for tumor production by cell lines derived from lower vertebrates. In Vitro Cell Dev Biol 24:217–222

    CAS  PubMed  Google Scholar 

  • Regan JD, Cook JS (1967) Photoreactivation in an established vertebrate cell line. Proc Natl Acad Sci U S A 58:2274–2279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rehberger K, Kropf C, Segner H (2018) In vitro or not in vitro: a short journey through a long history. Environ Sci Eur 30:23

    PubMed  PubMed Central  Google Scholar 

  • Reichert M, Bergmann SM, Hwang J, Buchholz R, Lindenberger C (2017) Antiviral activity of exopolysaccharides from Arthrospira platensis against koi herpesvirus. J Fish Dis 40:1441–1450

    CAS  PubMed  Google Scholar 

  • Rivers TM (1937) Viruses and Koch’s postulates. J Bacteriol 33(1):1–12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ronen A, Perelberg A, Abramowitz J, Hutoran M, Tinman S, Bejerano I, Steinitz M, Kotler M (2003) Efficient vaccine against the virus causing a lethal disease in cultured Cyprinus carpio. Vaccine 21:4677–4684

    CAS  PubMed  Google Scholar 

  • Rubio N, Datar I, Stachura D, Kaplan D, Krueger K (2019) Cell-based fish: a novel approach to seafood production and an opportunity for cellular agriculture. Front Sustain Food Syst 3:43. https://doi.org/10.3389/fsufs.2019.00043

    Article  Google Scholar 

  • Russell WMS, Burch RL (1959) The principles of humane experimental technique. Methuen, London

    Google Scholar 

  • Rutishauser BV, Pesonen M, Escher BI, Ackermann GE, Aerni HR, Suter MJF, Eggen RIL (2004) Comparative analysis of estrogenic activity in sewage treatment plant effluents involving three in vitro assays and chemical analysis of steroids. Environ Toxicol Chem 23:857–864

    CAS  PubMed  Google Scholar 

  • Ryan LA, Seymour CB, O’Neill-Mehlenbacher A, Mothersill CE (2008) Radiation-induced adaptive response in fish cell lines. J Environ Radioact 99(4):739–747

    CAS  PubMed  Google Scholar 

  • Ryan LA, Seymour CB, Joiner MC, Mothersill CE (2009) Radiation-induced adaptive response is not seen in cell lines showing a bystander effect but is seen in lines showing HRS/IRR response. Int J Radiat Biol 85:87–95

    CAS  PubMed  Google Scholar 

  • Saggers BA, Gould ML (1989) The attachment of microorganisms to macrophages isolated from the tilapia Oreochromis spilurus (Gunther). J Fish Biol 35(2):287–294

    Google Scholar 

  • Santini MT, Rainaldi G, Indovina PL (1999) Multicellular tumour spheroids in radiation biology. Int J Radiat Biol 75(7):787–799

    CAS  PubMed  Google Scholar 

  • Schippers IJ, Moshage H, Roelofsen H, Müller M, Heymans HS, Ruiters M, Kuipers F (1997) Immortalized human hepatocytes as a tool for the study of hepatocytic (de-)differentiation. Cell Biol Toxicol 13:375–386

    CAS  PubMed  Google Scholar 

  • Schirmer K (2006) Proposal to improve vertebrate cell cultures to establish them as substitutes for the regulatory testing of chemicals and effluents using fish. Toxicology 224(3):163–183

    CAS  PubMed  Google Scholar 

  • Schultz E, Jaryszak DL, Gibson MC, Albright DJ (1986) Absence of exogenous satellite cell contribution to regeneration of frozen skeletal muscle. J Muscle Res Cell Motil 7:361–367

    CAS  PubMed  Google Scholar 

  • Segner H (1998) Fish cell lines as a tool in aquatic toxicology. Experientia Suppl 86:1–38

    CAS  Google Scholar 

  • Segner H, Braunbeck T (2003) End points for in vitro toxicity testing with fish cells. In: Austin B, Mothersill C (eds) In vitro methods in aquatic toxicology. Springer Praxis, Chichester

    Google Scholar 

  • Shaw RW, Kent ML, Adamson ML (2001) Phagocytosis of Loma salmonae (Microsporidia) spores in Atlantic salmon (Salmo salar), a resistant host and Chinook salmon (Oncorhynchus tshawytscha), a susceptible host. Fish Shellfish Immunol 11:91–100

    CAS  PubMed  Google Scholar 

  • Shield K, Ackland ML, Ahmed N, Rice GE (2009) Multicellular spheroids in ovarian cancer metastases: biology and pathology. Gynecol Oncol 113(1):143–148

    PubMed  Google Scholar 

  • Shima A, Setlow RB (1985) Establishment of a cell line (PF line) from a gynogenetic teleost, Poecilia formosa (Girard), and characterization of its repair ability of UV-induced DNA damage. Zool Sci 2:477–483

    Google Scholar 

  • Shima A, Nikaido O, Shinohara S, Egami N (1980) Continued in vitro growth of fibroblast-like cells (RBCF-1) derived from the caudal fin of the fish Carassius auratus. Exp Gerontol 15:305–314

    CAS  PubMed  Google Scholar 

  • Shima A, Ikenaga M, Nikaido O, Takebe H, Egami N (1981) Photoreactivation of ultraviolet lightinduced damage in cultured fish cells as revealed by increased colony-forming ability and decreased content of pyrimidine dimers. Photochem Photobiol 33:313–316

    CAS  PubMed  Google Scholar 

  • Shima A, Isa K, Komura J, Hayasaka K, Mitani H (1987) Somatic cell genetic study of DNA repair in cultured fish cells. In: Kuroda Y, Kurstak E, Maramorosch K (eds) invertebrate and fish tissue culture. Japan Scientific Societies Press, Tokyo, pp 215–217

    Google Scholar 

  • Smeets JMW, Rankouhi TR, Nichols KM, Komen H, Kaminski NE, Giesy JP, van den Berg M (1999) In vitro vitellogenin production by carp (Cyprinus carpio) hepatocytes as a screening method for determining (anti)estrogenic activity of xenobiotics. Toxicol Appl Pharmacol 157(1):68–76

    CAS  PubMed  Google Scholar 

  • Sommerset I, Krossøy B, Biering E, Frost P (2005) Vaccines for fish in aquaculture. Expert Rev Vaccines 4:89–101

    CAS  PubMed  Google Scholar 

  • Stinehardt E, Israeli C, Lambert R (1913) Studies on the cultivation of the virus of vaccinia. J Infect Dis 13:204–300

    Google Scholar 

  • Sumpter JP, Jobling S (1995) Vitellogenesis as a biomarker for estrogenic contamination in the aquatic environment. Environ Health Perspect 103:173–178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sung KE, Su X, Berthier E, Pehlke C, Friedl A, Beebe DJ (2013) Understanding the impact of 2D and 3D fibroblast cultures on in vitro breast cancer models. PLoS One 8(10):e76373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sykes JE, Rankin SC (2014) Isolation in cell culture. Canine Feline Infect Dis 1:2–9

    Google Scholar 

  • Taju G, Abdul Majeed S, Nambi KSN, Sahul Hameed AS (2017) Application of fish cell lines for evaluating the chromium induced cytotoxicity, genotoxicity and oxidative stress. Chemosphere 184:1–12

    CAS  PubMed  Google Scholar 

  • Ternes TA, Meisenheimer M, McDowell D, Sacher F, Brauch HJ, Haist-Gulde B, Preuss G, Wilme U, Zulei-Seibert N (2002) Removal of pharmaceuticals during drinking water treatment. Environ Sci Technol 36(17):3855–3863

    CAS  PubMed  Google Scholar 

  • Thangaraj RS, Ravi C, Kumar R, Dharmaratnam A, Saidmuhammed BV, Pradhan PK, Sood N (2018) Derivation of two tilapia (Oreochromis niloticus) cell lines for efficient propagation of tilapia lake virus (TiLV). Aquaculture 492:206–214

    Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    CAS  PubMed  Google Scholar 

  • Thorpe KL, Maack G, Benstead R, Tyler CR (2009) Estrogenic wastewater treatment works effluents reduce egg production in fish. Environ Sci Technol 43(8):2976–2982

    CAS  PubMed  Google Scholar 

  • Till JE, McCulloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222

    CAS  PubMed  Google Scholar 

  • Troszok A, Kolek L, Szczygieł J, Wawrzeczko J, Borzym E, Reichert M, Kamińska T, Ostrowski T, Jurecka P, Adamek M, Rakus K, Irnazarow I (2018) Acyclovir inhibits cyprinid herpesvirus 3 multiplication in vitro. J Fish Dis 41(11):1709–1718

    CAS  PubMed  Google Scholar 

  • Tsugawa K, Lagerspetz K (1990) Direct adaptations of cells to temperature: membrane fluidity of goldfish cells cultured in vitro at different temperatures. Comp Biochem Physiol 96A(1990):57–60

    Google Scholar 

  • Tsuruga Y, Kiyono T, Matsushita M, Takahashi T, Kasai H, Todo S (2008) Establishment of immortalized human hepatocytes by introduction of HPV16 E6/E7 and hTERT as cell sources for liver cell-based therapy. Cell Transplant 17:1083–1094

    PubMed  Google Scholar 

  • Ulrich AB, Pour PM (2001) Cell lines. In: Brenner S, Miller JH (eds) Encyclopedia of genetics. Academic Press, Cambridge, MA

    Google Scholar 

  • Uysal O, Sevimli T, Sevimli M, Gunes S, Sariboyaci AE (2018) Cell and tissue culture: the base of biotechnology. Omics technologies and bio-engineering, pp 391–429

    Google Scholar 

  • Vallejo AN, Ellsaesser CF, Miller NW, Clem LW (1991) Spontaneous development of functionally active long-term monocyte-like cell lines from channel catfish. In Vitro Cell Dev Biol 27(4):279–286

    Google Scholar 

  • Van Der Ven PFM, Fürst DO (1998) Expression of sarcomeric proteins and assembly of myofibrils in the putative myofibroblast cell line BHK-21/C13. J Muscle Res Cell Motil 19:767–775

    PubMed  Google Scholar 

  • Verma D, Kim EA, Swaminathan S (2013) Cell-based screening assay for antiviral compounds targeting the ability of herpesvirus posttranscriptional regulatory proteins to stabilize viral mRNAs. J Virol 87(19):10742–10751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verma A, Verma M, Singh A (2020) Animal tissue culture principles and applications. Anim Biotechnol:269–293

    Google Scholar 

  • Vertrees R, Goodwin T, Jordan JM, Zwischenberger JB (2008) Tissue culture models. In: Zander DS, Popper HH, Jagirdar J, Haque AK, Cagle PT, Barrios R (eds) Molecular pathology of lung diseases. Molecular pathology library. Springer, New York, pp 150–165

    Google Scholar 

  • Villena AJ (2003) Applications and needs of fish and shellfish cell culture for disease control in aquaculture. Rev Fish Biol Fish 13:111–140

    Google Scholar 

  • Wagle M, Jesuthasan S (2003) Baculovirus-mediated gene expression in zebrafish. Mar Biotechnol 5:58–63

    CAS  Google Scholar 

  • Waltzek TB, Kelley GO, Alfaro ME, Kurobe T, Davison AJ, Hedrick RP (2009) Phylogenetic relationships in the family Herpesviridae. Dis Aquat Org 84:179–194

    CAS  Google Scholar 

  • Wang Q, Fang J, Pan Q, Wang Y, Xue T, Li L, Chen T (2018) Efficient and stable delivery of multiple genes to fish cells by a modified recombinant baculovirus system. Int J Mol Sci 19(12):3767

    PubMed Central  Google Scholar 

  • Weiswald LB, Bellet D, Dangles-Marie V (2015) Spherical cancer models in tumor biology. Neoplasia 17(1):1–15

    PubMed  PubMed Central  Google Scholar 

  • Wise DJ, Greenway TE, Byars TS, Griffin MJ, Khoo LH (2015) Oral vaccination of channel catfish against enteric septicemia of catfish (ESC) using a live attenuated Edwardsiella ictaluri vaccine. J Aquat Anim Health 27:135–143

    CAS  PubMed  Google Scholar 

  • Wolf K (1988) Fish viruses and fish viral diseases. Cornell University Press, Ithaca, NY

    Google Scholar 

  • Wolf K, Ahne W (1982) Fish cell culture. Adv Cell Cult 2:305–327

    Google Scholar 

  • Wolf K, Darlington RW (1971) Channel catfish virus: a new herpesvirus of ictalurid fish. J Virol 8(4):525–533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf K, Quimby MC (1962) Established eurythermic line of fish cells in vitro. Science 135(3508):1065–1066

    CAS  PubMed  Google Scholar 

  • Wolf K, Quimby MC (1969) Fish cell and tissue culture. Fish Physiol 3:253–305

    Google Scholar 

  • Wolf K, Quimby MC (1976a) Primary monolayer culture of fish cells initiated from minced tissues. Tissue Cult Assoc Manual 2:445–448

    Google Scholar 

  • Wolf K, Quimby MC (1976b) Primary monolayer culture of fish cells initiated from trypsinized tissues. Tissue Cult Assoc Manual 2:453–456

    Google Scholar 

  • Wolf K, Alexander S, Schacht V, Coussens LM, von Andrian UH, van Rheenen J (2009) Collagen-based cell migration models in vitro and in vivo. Cell Dev Biol 20(8):931–941

    CAS  Google Scholar 

  • Wongtavatchai J, Conrad PA, Hedrick RP (1994) In vitro cultivation of the microsporidian: enterocytozoon salmonis using a newly developed medium for salmonid lymphocytes. J Tissue Cult Methods 16:125–131

    Google Scholar 

  • Xu Z, Gao Y, Hao Y, Li E, Wang Y, Zhang J (2013) Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer. Biomaterials 34(16):4109–4117

    CAS  PubMed  Google Scholar 

  • Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3D. Cell 130(4):601–610

    CAS  PubMed  Google Scholar 

  • Yan Y, Du J, Chen T, Yi M, Li M, Wang S, Li CM, Hong Y (2009) Establishment of medaka fish as a model for stem cell-based gene therapy: efficient gene delivery and potential chromosomal integration by baculoviral vectors. Exp Cell Res 315:2322–2331

    CAS  PubMed  Google Scholar 

  • Yang J, Liu A, Dougherty C, Chen X, Guzman R, Nandi S (2000) Estrogen and progesterone receptors can be maintained in normal human breast epithelial cells in primary culture and after transplantation into nude mice. Oncol Rep 7(1):17–21

    CAS  PubMed  Google Scholar 

  • Ye HQ, Chen SL, Sha ZX, Xu MY (2006) Development and characterization of cell lines from heart, liver, spleen and head kidney of sea perch Lateolabrax japonicus. J Fish Biol 69:115–126

    CAS  Google Scholar 

  • Yi M, Hong N, Hong Y (2009) Generation of medaka fish haploid embryonic stem cells. Science 326:430–433

    CAS  PubMed  Google Scholar 

  • Yip JH, Bols NC (1982) The fusion of trout spermatozoa with Chinese hamster fibroblasts. J Cell Sci 53:307–321

    CAS  PubMed  Google Scholar 

  • Yoshizaki G, Ichikawa M, Hayashi M, Iwasaki Y, Miwa M, Shikina S, Okutsu T (2010) Sexual plasticity of ovarian germ cells in rainbow trout. Dev Stem Cells 137:1227–1230

    CAS  Google Scholar 

  • Zafarullah M, Bonham K, Gedamu L (1988) Structure of the rainbow trout metallothionein B gene and characterization of its metal-responsive region. Mol Cell Biol:84469–84476

    Google Scholar 

  • Zafarullah M, Olsson PE, Gedamu L (1989) Endogenous and heavy metal ion induced metallothionein gene expression in salmonid fish tissues and cell lines. Gene 83:85–93.286

    CAS  PubMed  Google Scholar 

  • Zeeman MG, Brindley WA (1981) Effects of toxic agents upon fish immune system: a review. In: Sharma RP (ed) Immunological considerations in toxicology, vol 2. CRC Press, Boca Raton, pp 1–60

    Google Scholar 

  • Zegura B, Filipic M (2019) The application of the comet assay in fish cell lines. Mut Res 842:72–84

    CAS  Google Scholar 

  • Zhang Q, Cooper RK, Wolters WR, Tiersch TR (1998) Isolation, culture and characterization of a primary fibroblast cell line from channel catfish. Cytotechnology 26:83–90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang CL, Huang T, Wu BL, He WX, Liu D (2017) Stem cells in cancer therapy: opportunities and challenges. Oncotarget 8(43):75756–75766

    PubMed  PubMed Central  Google Scholar 

  • Zhou GZ, Li ZQ, Yuan XP, Zhang QY (2007) Establishment, characterization, and virus susceptibility of a new marine cell line from red spotted grouper (Epinephelus akaara). Mar Biotechnol 9:370–376

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Mississippi Agricultural and Forestry Experiment Station (MAFES) Strategic Research Initiative and the US Department of Agriculture—Agricultural Research Service—Catfish Health Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suja Aarattuthodi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aarattuthodi, S., Dharan, V. (2021). Applications of Fish Cell Cultures. In: Gupta, S.K., Giri, S.S. (eds) Biotechnological Advances in Aquaculture Health Management . Springer, Singapore. https://doi.org/10.1007/978-981-16-5195-3_7

Download citation

Publish with us

Policies and ethics