Skip to main content

Vaccines to Prevent Diseases in Aquaculture

  • Chapter
  • First Online:
Biotechnological Advances in Aquaculture Health Management

Abstract

Preventive measures are very important and have become a part of sustainable and healthy aquaculture. Aquaculture involves the culture of huge number of animals, and therapy is not an option, and hence disease prevention by vaccination is an important strategy. Vaccination helps in control and spread of diseases, thereby reducing the application of antibiotics. Vaccination increases the resistance to diseases and provides protection to unvaccinated fish through herd immunity. Vaccination is generally a safe and economically acceptable preventive measure, and hence, it has become a common practice in modern aquaculture. Vaccines are of several types and administered in different ways; each have their pros and cons. Several adjuvants are also used in vaccines to enhance the efficacy of the existing formulations. Vaccines thus help to strengthen the quote “prevention is better than cure.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson DP (1997) Adjuvants and immunostimulants for enhancing vaccine potency in fish. Fish Vaccinology 90:257–265

    CAS  Google Scholar 

  • Ballesteros NA, Castro R, Abos R, Rodriguez SJSS, Perez PSI, Tafalla C (2013) The pyloric caeca area is a major site for IgM (+) and IgT (+) B cell recruitment in response to oral vaccination in rainbow trout. PLoS One 8:e66118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batista DA, Lindblad EB, Orta EO (2011) Progress in understanding adjuvant immune-toxicity mechanisms. Toxicol Lett 203:97–105

    Article  Google Scholar 

  • Bowden TJ (2008) Modulation of the immune system of fish by their environment. Fish Shellfish Immunol 25:373–383

    Article  CAS  PubMed  Google Scholar 

  • Brudeseth BE, Wiulsrod R, Fredriksen BN, Lindmo K, Lokling KE, Bordevik M, Steine N, Klevan A, Gravningen K (2013) Status and future prospects of vaccines for industrialized fin-fish farming. Fish Shellfish Immunol 35:1759–1768

    Article  CAS  PubMed  Google Scholar 

  • Carmen WEE, Forlenza L (2016) Oral vaccination of fish: lessons from humans and veterinary species. Dev Comp Immunol 64:118–137

    Article  Google Scholar 

  • Committee for Medicinal Products for Human Use [CPMP] (2004) Guideline on adjuvants in vaccines for human use. EMEA/CHMP/VEG/134716/2004

    Google Scholar 

  • Corradin G, Giudice GD (2005) Novel adjuvants for vaccines. Curr Med Chem 4:12

    Google Scholar 

  • Doll TA, Raman S, Dey R, Burkhard P (2013) Nanoscale assemblies and their biomedical applications. J R Soc Interface 10:20120740

    Article  PubMed  PubMed Central  Google Scholar 

  • Duff DCB (1939) Some serological relationships of the S, R, and G phases of Bacillus salmonicida. J Bacteriol 38:91–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duff DCB (1942) The oral immunization of trout against bacterium salmonicida. J Immunol 44:87–94

    Article  Google Scholar 

  • Evelyn TPT (2002) Finfish immunology and its use in preventing infectious diseases in cultured finfish. Diseases in Asian aquaculture IV. Fish Health Section, Asian Fisheries Society, Manila, 303–324

    Google Scholar 

  • Evensen Ø, Brudeseth B, Mutoloki M (2005) The vaccine formulation and its role in inflammatory processes in fish-effects and adverse effects. Dev Biol 121:117–125

    CAS  Google Scholar 

  • Evensen Ø (2009) Development in fish vaccinology with focus on delivery methodologies, adjuvants and formulations. The use of veterinary drugs and vaccines in Mediterranean aquaculture A / no 86

    Google Scholar 

  • FAO (2016) The state of world fisheries and aquaculture. FAO Fisheries and Aquaculture Department, Rome

    Google Scholar 

  • Frohlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 7:5577–5591

    Article  PubMed  PubMed Central  Google Scholar 

  • Girisha SK, Puneeth TG, Nithin MS, Naveen Kumar BT, Ajay SK, Vinay TN, Suresh T, Venugopal MN, Ramesh KS (2019) Red sea bream iridovirus disease (RSIVD) outbreak in Asian seabass (Lates calcarifer) cultured in open estuarine cages along the west coast of India: first report. Aquaculture:734712

    Google Scholar 

  • Girisha SK, Kushala KB, Nithin MS, Puneeth TG, Naveen Kumar BT, Vinay TN, Suresh T, Ajay SK, Venugopal MN, Ramesh KS (2020) First report of the infectious spleen and kidney necrosis virus (ISKNV) infection in ornamental fishes in India. Transbound Emerg Dis. https://doi.org/10.1111/tbed.13793

  • Gregory E, Titball R, Williamson D (2013) Vaccine delivery using nanoparticles. Front Cell Infect Microbiol 3:3389

    Article  Google Scholar 

  • Hansen JD, Landis ED, Phillips RD (2005) Discovery of a unique Ig heavy-chain isotype (IgT) in rainbow trout: implications for a distinctive B cell developmental pathway in teleost fish. Proc Natl Acad Sci U S A 102:6919–6924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu YL, Xiang LX, Shao JZ (2010) Identification and characterization of a novel immunoglobulin Z isotope in zebrafish: implications for a distinct B cell receptor in lower vertebrates. Mol Immunol 47:738–746

    Article  CAS  PubMed  Google Scholar 

  • Kensil CR, Patel U, Lennic M, Marciani D (1991) Separation and characterization of saponins with adjuvant activity from Quillaja saponaria Molina cortex. J Immunol 146:431–437

    Article  CAS  PubMed  Google Scholar 

  • Kim MG, Park JY, Shon Y, Kim G, Shim G, Oh YK (2014) Nanotechnology and vaccine development. Asian Journal of Pharmaceutical Science 9:227–235

    Article  Google Scholar 

  • Lai W, Hu Z, Fang Q (2013) The concerns on biosafety of nanomaterials. JSM Nanotechnology and Nanomedicine 1:1009

    Google Scholar 

  • Lillehaug A (1997) Vaccination strategies in seawater cage culture of salmonids. Developmental Biology Standards 90:401–408

    CAS  Google Scholar 

  • Magnadottir B (2006) Innate immunity of fish (overview). Fish Shellfish Immunol 20:137–151

    Article  CAS  PubMed  Google Scholar 

  • Mamo T, Poland GA (2012) Nanovaccinology: the next generation of vaccines meets 21st century materials science and engineering. Vaccine 30:6609–6611

    Article  CAS  PubMed  Google Scholar 

  • Melingen GO, Wergeland HI (2002) Physiological effects of an oil-adjuvanted vaccine on out-of-season Atlantic salmon (Salmo salar L.) smolt. Aquaculture 214:397–409

    Article  Google Scholar 

  • Midtlyng PJ, Lillehaug A (1998) Growth of Atlantic salmon (Salmo salar) after intraperitoneal administration of vaccines containing adjuvants. Disease of Aquatic Organisms 32:91–97

    Article  CAS  Google Scholar 

  • Midtlyng PJ (1997) Vaccinated fish welfare: protection versus side-effects. Fish Vaccinology. 90:371–379

    CAS  Google Scholar 

  • Midtlyng PJ, Reitan LJ, Lillehaug A, Ramstad A (1996a) Protection, immune responses and side effects in Atlantic salmon (Salmo salar L.) vaccinated against furunculosis by different procedures. Fish Shellfish Immunol 6:599–613

    Article  Google Scholar 

  • Midtlyng PJ, Reitan LJ, Speilberg L (1996b) Experimental studies on the efficacy and side-effects of intraperitoneal vaccination of Atlantic salmon (Salmo salar L.) against furunculosis. Fish Shellfish Immunol 6:335–350

    Article  Google Scholar 

  • Nakanishi Y, Ototake M (1997) Antigen uptake and immune responses after immersion vaccination. Fish Vaccinology 90:59–68

    CAS  Google Scholar 

  • Oyewumi MO, Kumar A, Cui Z (2010) Nano-microparticles as immune adjuvants: correlating article sizes and the resultant immune responses. Expert Reviews in Vaccines 9:1095–1107

    Article  CAS  Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Application of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:167–181

    Article  Google Scholar 

  • Petrovsky N, Aguliar JC (2004) Vaccine adjuvants: current state and future trends. Immunol Cell Biol 82:488–496

    Article  CAS  PubMed  Google Scholar 

  • Poppe TT, Breck O (1997) Pathology of Atlantic salmon (Salmo salar) intra-peritoneally immunized with oil-adjuvanted vaccine. A case report Disease of Aquatic Organisms 29:219–226

    Article  Google Scholar 

  • Pulendran B, Ahmed R (2011) Immunological mechanisms of vaccination. Nat Immunol 12:509–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quentel C, Vigneulle M (1997) Antigen uptake and immune responses after oral vaccination. Fish Vaccinology. 90:69–78

    CAS  Google Scholar 

  • Sahdev P, Ochyl LJ, Moon J (2014) Biomaterials for nanoparticle vaccine delivery systems. Pharm Res 31:2563–2582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schijns VEJC, Tangeras A (2005) Vaccine adjuvant technology: from theoretical mechanisms to practical approaches. In: Progress in fish vaccinology. Developments in Biological Standardization, Basel,. 121: 127–134

    Google Scholar 

  • Schultze V, Agosto VD, Wack A, Novicki D, Zorn J, Hennig R (2008) Safety of MF59™ adjuvant. Vaccine 26:3209–3222

    Article  CAS  PubMed  Google Scholar 

  • Secombes CJ, Ellis AE (2012) The immunology of teleosts. Fish pathology 4th ed. Wiley, New York, 144–166

    Google Scholar 

  • Shaalan M, Saleh M, El-Mahdy M, El-Matbouli M (2016) Recent progress in application of nanoparticles in fish medicine: a review. Nanomedicine Nanotechnology 12:701–710

    CAS  Google Scholar 

  • Smith JD, Morton LD, Ulery BD (2015) Nanoparticles as synthetic vaccines. Current Opinions in Biotechnology 34:217–224

    Article  CAS  Google Scholar 

  • Snieszko S, Piotrowska W, Kocylowski B, Marek K (1938) Badania bakteriologiczne i serogiczne nad bakteriami posocznicy karpi. Memoires de l’Institut d’Ichtyobiologie et Pisciculture de la Station de Pisciculture Experimentale a Mydlniki de l’Universite Jagiellonienne a Cracovie Nr 38

    Google Scholar 

  • Sorum U and B. Damsgard (2004): Effects of anaesthetisation and vaccination on feed intake and growth in Atlantic salmon (Salmo salar L.). Aquaculture, 232: 333–341

    Google Scholar 

  • Tissot AC, Maurer P, Nussberger J, Sabat R, Pfister T, Ignatenko S (2008) Effect of immunisation against angiotension II with CYT006-AngQb on ambulatory blood pressure: a double-blind, randomized, placebo-controlled phase IIa study. Lancet 371:821–827

    Article  CAS  PubMed  Google Scholar 

  • Tort L, Balasch JC, Mackenzie S (2003) Fish immune system. A crossroads between innate and adaptive responses. Ther Immunol 22:277–286

    Google Scholar 

  • Yildirimer L, Thanh NT, Loizidou M, Seifalin AM (2011) Toxicological considerations of clinically applicable nanoparticles. NanoToday 6:585–607

    Article  CAS  PubMed  Google Scholar 

  • You C, Han C, Wang X, Zheng Y, Li Q, Hu X (2012) The process of silver nanoparticles in antimicrobial mechanism, clinical application and cytotoxicity. Mol Biol Rep 39:9193–9201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaman MM, Good MF, Toth I (2013) Nanovaccines and their mode of action. Methods 60:226–231

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Seth A, Wibowo N, Zhao CX, Mitter N, Yu C, Middelber APJ (2014) Nanoparticle vaccines. Vaccine 32:327–337

    Article  PubMed  Google Scholar 

  • Zolnik BS, Fernandez AG, Sadrieh N, Dobrovolskaia MA (2010) Nanoparticles and immune systems. Endocrinology 151:458–465

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay TN .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

TN, V., Jung, MH., Patil, P.K., Panigrahi, A., S Kallappa, G. (2021). Vaccines to Prevent Diseases in Aquaculture. In: Gupta, S.K., Giri, S.S. (eds) Biotechnological Advances in Aquaculture Health Management . Springer, Singapore. https://doi.org/10.1007/978-981-16-5195-3_14

Download citation

Publish with us

Policies and ethics