Skip to main content

Biofloc Technology: An Eco-Based Emerging Avenue in Aquaculture Health Management

  • Chapter
  • First Online:
Biotechnological Advances in Aquaculture Health Management

Abstract

Intensified aquaculture is becoming a major stake in the global demand for animal protein. The enhancement in the aquaculture practices and management of resources can reduce the environmental impact on the aquatic system. This helps in the transition of traditional culture practice to the intensified sustainable culture system. On this note, biofloc technology is considered as one of the sustainable intensification practices to culture aquatic animals for increasing production and immunity with minimal water usage. This system is growing faster and getting attention currently due to its advantages and augments large-scale production. The microbial community improves various aspects in biofloc system like recycling of the nitrogen metabolites through in situ bioremediation, improving water quality, producing microbial protein, and inducing the immune system of the cultured animals. Biofloc has a high nutrition profile, which is an excellent alternative as a feed ingredient and reduces the feed conversion ratio as it provides natural feed in the system. The diversified microbial community in biofloc plays a key role in inducing disease resistance against the pathogenic bacteria. The constant exposure to natural probiotic microflora in the environment induces the immunity of the animal by competitive exclusion and quorum sensing of beneficial microbiota. Therefore, it increases overall performances and productivity when compared with the conventional system. This current review provides an insight into the biofloc technology, microflora assemblages, and their function/role in gut microbiome maintenance, improving immunity, disease resistance, and overall productivity in nursery and grow out aquaculture systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbaszadeh A, Yavari V, Hoseini SJ, Nafisi M, Torfi Mozanzadeh M (2019) Effects of different carbon sources and dietary protein levels in a biofloc system on growth performance, immune response against white spot syndrome virus infection and cathepsin L gene expression of Litopenaeus vannamei. Aquac Res 50(4):1162–1176

    CAS  Google Scholar 

  • Ajadi A, Sabri MY, Dauda AB, Ina-Salwany MY, Hasliza AH, Malaysia P (2016) Immunoprophylaxis: a better alternative protective measure against shrimp vibriosis–a review. PJSRR 2:58–69

    Google Scholar 

  • Anand PS, Kohli MPS, Kumar S, Sundaray JK, Roy SD, Venkateshwarlu G et al (2014) Effect of dietary supplementation of biofloc on growth performance and digestive enzyme activities in Penaeus monodon. Aquaculture 418:108–115

    Article  Google Scholar 

  • Aquilino F, Paradiso A, Trani R, Longo C, Pierri C, Corriero G, de Pinto MC (2020) Chaetomorpha linum in the bioremediation of aquaculture wastewater: optimization of nutrient removal efficiency at the laboratory scale. Aquaculture 523:735133

    Article  CAS  Google Scholar 

  • Avnimelech Y (1999) Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture 176:227–235

    Article  CAS  Google Scholar 

  • Balzaretti S, Taverniti V, Guglielmetti S, Fiore W, Minuzzo M, Ngo HN et al (2017) A novel rhamnose-rich hetero-exopolysaccharide isolated from Lactobacillus paracasei DG activates THP-1 human monocytic cells. Appl Environ Microbiol 83(3)

    Google Scholar 

  • Browdy CL, Bratvold D, Stokesland AD, McIntosh P (2001) Perspective on the application of closed shrimp culture systems. J Aquacult Res

    Google Scholar 

  • Buruiana CT, Gómez B, Vizireanu C, Garrote G (2017) Manufacture and evaluation of xylooligosaccharides from corn Stover as emerging prebiotic candidates for human health. LWT 77:449–459

    Article  CAS  Google Scholar 

  • Cardona E, Gueguen Y, Magré K, Lorgeoux B, Piquemal D, Pierrat F et al (2016) Bacterial community characterization of water and intestine of the shrimp Litopenaeus stylirostris in a biofloc system. BMC Microbiol 16(1):157

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakrapani S, Panigrahi A, Sundaresan J, Sivakumar MR, Palanisamy R, Kumar V (2020) Three different C: N ratios for Pacific white shrimp, Penaeus vannamei under practical conditions: evaluation of growth performance, immune and metabolic pathways. Aquac Res

    Google Scholar 

  • Chauhan A, Singh R (2019) Probiotics in aquaculture: a promising emerging alternative approach. Symbiosis 77(2):99–113

    Article  Google Scholar 

  • Chen J, Ren Y, Li Y, Xia B (2018) Regulation of growth, intestinal microbiota, non-specific immune response and disease resistance of sea cucumber Apostichopus japonicus (Selenka) in biofloc systems. Fish Shellfish Immunol 77:175–186

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Ling J, Blancheton JP (2006) Nitrification kinetics of biofilm as affected by water quality factors. Aquac Eng 34(3):179–197

    Article  Google Scholar 

  • Correia ES, Wilkenfeld JS, Morris TC, Wei L, Prangnell DI, Samocha TM (2014) Intensive nursery production of the Pacific white shrimp Litopenaeus vannamei using two commercial feeds with high and low protein content in a biofloc-dominated system. Aquac Eng 59:48–54

    Article  Google Scholar 

  • Crab R, Lambert A, Defoirdt T, Bossier P, Verstraete W (2010) The application of bioflocs technology to protect brine shrimp (Artemia franciscana) from pathogenic Vibrio harveyi. J Appl Microbiol 109(5):1643–1649

    CAS  PubMed  Google Scholar 

  • Crab R, Defoirdt T, Bossier P, Verstraete W (2012) Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture 356:351–356

    Article  Google Scholar 

  • Dauda AB (2020) Biofloc technology: a review on the microbial interactions, operational parameters and implications to disease and health management of cultured aquatic animals. Rev Aquac 12(2):1193–1210

    Article  Google Scholar 

  • Dauda AB, Romano N, Ebrahimi M, Karim M, Natrah I, Kamarudin MS, Ekasari J (2017) Different carbon sources affects biofloc volume, water quality and the survival and physiology of African catfish Clarias gariepinus fingerlings reared in an intensive biofloc technology system. Fish Sci 83(6):1037–1048

    Article  CAS  Google Scholar 

  • Dauda AB, Romano N, Ebrahimi M, Teh JC, Ajadi A, Chong CM et al (2018) Influence of carbon/nitrogen ratios on biofloc production and biochemical composition and subsequent effects on the growth, physiological status and disease resistance of African catfish (Clarias gariepinus) cultured in glycerol-based biofloc systems. Aquaculture 483:120–130

    Article  CAS  Google Scholar 

  • de Lima PCM, Silva LOB, de Lima Abreu J, da Silva SMBC, Severi W, Gálvez AO (2019) Tilapia cultivated in a low-salinity biofloc system supplemented with Chlorella vulgaris and differents molasses application rates. Bol Inst Pesca 45(4)

    Google Scholar 

  • de Lorenzo MA, Candia EWS, Schleder DD, Rezende PC, Seiffert WQ, do Nascimento Vieira, F. (2016a) Intensive hatchery performance of Pacific white shrimp in the biofloc system under three different fertilization levels. Aquac Eng 72:40–44

    Article  Google Scholar 

  • de Lorenzo MA, Candia EWS, Schleder DD, Rezende PC, Seiffert WQ, do Nascimento Vieira, F. (2016b) Intensive hatchery performance of Pacific white shrimp in the biofloc system under three different fertilization levels. Aquac Eng 72:40–44

    Article  Google Scholar 

  • de Souza DM, Suita SM, Romano LA, Wasielesky W Jr, Ballester ELC (2014) Use of molasses as a carbon source during the nursery rearing of Farfantepenaeus brasiliensis (Latreille, 1817) in a biofloc technology system. Aquac Res 45(2):270–277

    Article  Google Scholar 

  • Deng M, Chen J, Gou J, Hou J, Li D, He X (2018) The effect of different carbon sources on water quality, microbial community and structure of biofloc systems. Aquaculture 482:103–110

    Article  CAS  Google Scholar 

  • Dennis-Wall JC, Culpepper T, Nieves C Jr, Rowe CC, Burns AM, Rusch CT et al (2017) Probiotics (Lactobacillus gasseri KS-13, Bifidobacterium bifidum G9-1, and Bifidobacterium longum MM-2) improve rhinoconjunctivitis-specific quality of life in individuals with seasonal allergies: a double-blind, placebo-controlled, randomized trial. Am J Clin Nutr 105(3):758–767

    Article  CAS  PubMed  Google Scholar 

  • do Espírito Santo CM, Pinheiro IC, de Jesus GFA, Mouriño JLP, FDN V, Seiffert WQ (2017) Soybean molasses as an organic carbon source in the farming of Litopenaeus vannamei (Boone, 1931) in a biofloc system. Aquac Res 48(4):1827–1835

    Article  Google Scholar 

  • Eding EH, Kamstra A, Verreth JAJ, Huisman EA, Klapwijk A (2006) Design and operation of nitrifying trickling filters in recirculating aquaculture: a review. Aquac Eng 34(3):234–260

    Article  Google Scholar 

  • Ekasari J, Azhar MH, Surawidjaja EH, Nuryati S, De Schryver P, Bossier P (2014) Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources. Fish Shellfish Immunol 41(2):332–339

    Article  CAS  PubMed  Google Scholar 

  • Ekasari J, Rivandi DR, Firdausi AP, Surawidjaja EH, Zairin M Jr, Bossier P, De Schryver P (2015) Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture 441:72–77

    Article  Google Scholar 

  • Ekasari J, Suprayudi MA, Wiyoto W, Hazanah RF, Lenggara GS, Sulistiani R et al (2016) Biofloc technology application in African catfish fingerling production: the effects on the reproductive performance of broodstock and the quality of eggs and larvae. Aquaculture 464:349–356

    Article  Google Scholar 

  • Elayaraja S, Mabrok M, Algammal A, Sabitha E, Rajeswari MV, Zágoršek K et al (2020) Potential influence of jaggery-based biofloc technology at different C: N ratios on water quality, growth performance, innate immunity, immune-related genes expression profiles, and disease resistance against Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 107:118–128

    Article  CAS  PubMed  Google Scholar 

  • El-Husseiny OM, Goda AMAS, Mabroke RS, Soaudy M (2018) Complexity of carbon sources and the impact on biofloc integrity and quality in tilapia (Oreochromis niloticus) tanks. AACL Bioflux 11(3)

    Google Scholar 

  • Emerenciano M, Cuzon G, Paredes A, Gaxiola G (2013a) Evaluation of biofloc technology in pink shrimp Farfantepenaeus duorarum culture: growth performance, water quality, microorganisms profile and proximate analysis of biofloc. Aquac Int 21(6):1381–1394

    Article  Google Scholar 

  • Emerenciano M, Gaxiola G, Cuzon G (2013b) Biofloc technology (BFT): a review for aquaculture application and animal food industry. In: Biomass now-cultivation and utilization, pp 301–328

    Google Scholar 

  • Emerenciano M, Martinez-Córdova LR, Martínez-Porchas M, Miranda-Baeza A (2017) Biofloc technology (BFT): a tool for water quality management in aquaculture. In: Tutu H (ed) Water quality. IntechOpen

    Google Scholar 

  • Mansour, A.T, Esteban, M.Á. (2017). Effects of carbon sources and plant protein levels in a biofloc system on growth performance, and the immune and antioxidant status of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 64:202–209

    Google Scholar 

  • FAO (2018) The state of world fisheries and aquaculture 2018 - meeting the sustainable development goals. FAO, Rome

    Google Scholar 

  • Ferreira GS, Bolívar NC, Pereira SA, Guertler C, do Nascimento Vieira F, Mouriño JLP, Seiffert WQ (2015) Microbial biofloc as source of probiotic bacteria for the culture of Litopenaeus vannamei. Aquaculture 448:273–279

    Article  CAS  Google Scholar 

  • Fóes GK, Fróes C, Krummenauer D, Poersch L, Wasielesky W (2011) Nursery of pink shrimp Farfantepenaeus paulensis in biofloc technology culture system: survival and growth at different stocking densities. J Shellfish Res 30(2):367–373

    Article  Google Scholar 

  • Hargreaves JA (2006) Photosynthetic suspended-growth systems in aquaculture. Aquac Eng 34(3):344–363

    Article  Google Scholar 

  • Haridas H, Verma AK, Rathore G, Prakash C, Sawant PB, Babitha Rani AM (2017) Enhanced growth and immuno-physiological response of genetically improved farmed tilapia in indoor biofloc units at different stocking densities. Aquac Res 48(8):4346–4355

    Article  CAS  Google Scholar 

  • Hibbing ME, Fuqua C, Parsek MR, Peterson S (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8(1):15–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holt CC, Bass D, Stentiford GD, van der Giezen M (2020) Understanding the role of the shrimp gut microbiome in health and disease. J Invertebr Pathol 21:107387

    Google Scholar 

  • Hostins B, Wasielesky W, Decamp O, Bossier P, De Schryver P (2019) Managing input C/N ratio to reduce the risk of acute hepatopancreatic necrosis disease (AHPND) outbreaks in biofloc systems–a laboratory study. Aquaculture 508:60–65

    Article  CAS  Google Scholar 

  • Huang HH (2019) Novel biofloc technology (BFT) for ammonia assimilation and reuse in aquaculture in situ. Ammonia-properties and use. IntechOpen

    Google Scholar 

  • Huang Z, Zeng S, Xiong J, Hou D, Zhou R, Xing C, Wei D, Deng X, Yu L, Wang H, Deng Z (2020) Microecological Koch’s postulates reveal that intestinal microbiota dysbiosis contributes to shrimp white feces syndrome. Microbiome 8(1):1–13

    Article  Google Scholar 

  • Jiang W, Ren W, Li L, Dong S, Tian X (2020) Light and carbon sources addition alter microbial community in biofloc-based Litopenaeus vannamei culture systems. Aquaculture 515:734572

    Article  CAS  Google Scholar 

  • Jiménez-Ojeda YK, Collazos-Lasso LF, Arias-Castellanos JA (2018) Dynamics and use of nitrogen in biofloc technology-BFT. Aquacult Aquarium Conserv Legisl 11(4):1107–1129

    Google Scholar 

  • Ju ZY, Forster I, Conquest L, Dominy W, Kuo WC, David Horgen F (2008) Determination of microbial community structures of shrimp floc cultures by biomarkers and analysis of floc amino acid profiles. Aquac Res 39(2):118–133

    Article  CAS  Google Scholar 

  • Khanjani MH, Sharifinia M (2020) Biofloc technology as a promising tool to improve aquaculture production. Rev Aquacult

    Google Scholar 

  • Khanjani MH, Sajjadi MM, Alizadeh M, Sourinejad I (2017) Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultivated in a biofloc system: the effect of adding different carbon sources. Aquac Res 48(4):1491–1501

    Article  CAS  Google Scholar 

  • Kim SK, Pang Z, Seo HC, Cho YR, Samocha T, Jang IK (2014) Effect of bioflocs on growth and immune activity of Pacific white shrimp, L itopenaeus vannamei postlarvae. Aquac Res 45(2):362–371

    Article  CAS  Google Scholar 

  • Kumar VS, Pandey PK, Anand T, Bhuvaneswari GR, Dhinakaran A, Kumar S (2018) Biofloc improves water, effluent quality and growth parameters of Penaeus vannamei in an intensive culture system. J Environ Manag 215:206–215

    Article  Google Scholar 

  • Lawley TD, Walker AW (2013) Intestinal colonization resistance. Immunology 138(1):1–1

    Article  CAS  PubMed  Google Scholar 

  • Li E, Chen L, Zeng C, Chen X, Yu N, Lai Q, Qin JG (2007) Growth, body composition, respiration and ambient ammonia nitrogen tolerance of the juvenile white shrimp, Litopenaeus vannamei, at different salinities. Aquaculture 265(1–4):385–390

    Article  CAS  Google Scholar 

  • Li C, Weng S, He J (2019) WSSV–host interaction: host response and immune evasion. Fish Shellfish Immunol 1(84):558–571

    Article  Google Scholar 

  • Lin YC, Chen JC (2001) Acute toxicity of ammonia on Litopenaeus vannamei Boone juveniles at different salinity levels. J Exp Mar Biol Ecol 259(1):109–119

    Article  CAS  PubMed  Google Scholar 

  • Liu CH, Chen JC (2004) Effect of ammonia on the immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus. Fish Shellfish Immunol 16(3):321–334

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Ye Z, Liu D, Zhao J, Sivaramasamy E, Deng Y, Zhu S (2018a) Influence of stocking density on growth, digestive enzyme activities, immune responses, antioxidant of Oreochromis niloticus fingerlings in biofloc systems. Fish Shellfish Immunol 81:416–422

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Zhu S, Liu D, Ye Z (2018b) Effect of the C/N ratio on inorganic nitrogen control and the growth and physiological parameters of tilapias fingerlings, Oreochromis niloticu reared in biofloc systems. Aquac Res 49(7):2429–2439

    Article  CAS  Google Scholar 

  • Liu G, Deng Y, Verdegem M, Ye Z, Zhu S (2019) Using poly (β-hydroxybutyrate-β-hydroxyvalerate) as carbon source in biofloc-systems: nitrogen dynamics and shift of Oreochromis niloticus gut microbiota. Sci Total Environ 694:133664

    Article  CAS  PubMed  Google Scholar 

  • Llewellyn MS, Boutin S, Hoseinifar SH, Derome N (2014) Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front Microbiol 5:207

    Article  PubMed  PubMed Central  Google Scholar 

  • Long L, Yang J, Li Y, Guan C, Wu F (2015) Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus). Aquaculture 448:135–141

    Article  CAS  Google Scholar 

  • Luo G, Gao Q, Wang C, Liu W, Sun D, Li L, Tan H (2014) Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture 422:1–7

    Article  Google Scholar 

  • Luo G, Xu J, Meng H (2020) Nitrate accumulation in biofloc aquaculture systems. Aquaculture 520:734675

    Article  CAS  Google Scholar 

  • Magnadóttir B (2006) Innate immunity of fish (overview). Fish Shellfish Immunol 20(2):137–151

    Article  PubMed  Google Scholar 

  • Megahed ME, Elmesiry G, Ellithy A, Mohamed K (2018) Genetic, nutritional and pathological investigations on the effect of feeding low protein diet and biofloc on growth performance, survival and disease prevention of Indian white shrimp Fenneropenaeus indicus. Aquac Int 26(2):589–615

    Article  CAS  Google Scholar 

  • Panigrahi A, Azad IS (2007) Microbial intervention for better fish health in aquaculture: the Indian scenario. Fish Physiol Biochem 33(4):429–440

    Article  CAS  Google Scholar 

  • Panigrahi A, Saranya C, Sundaram M, Kannan SV, Das RR, Kumar RS et al (2018) Carbon: nitrogen (C: N) ratio level variation influences microbial community of the system and growth as well as immunity of shrimp (Litopenaeus vannamei) in biofloc based culture system. Fish Shellfish Immunol 81:329–337

    Article  CAS  PubMed  Google Scholar 

  • Panigrahi A, Sundaram M, Chakrapani S, Rajasekar S, Syama Dayal J, Chavali G (2019a) Effect of carbon and nitrogen ratio (C: N) manipulation on the production performance and immunity of Pacific white shrimp Litopenaeus vannamei (Boone, 1931) in a biofloc-based rearing system. Aquac Res 50(1):29–41

    Article  CAS  Google Scholar 

  • Panigrahi A, Sundaram M, Saranya C, Kumar RS, Dayal JS, Saraswathy R et al (2019b) Influence of differential protein levels of feed on production performance and immune response of pacific white leg shrimp in a biofloc–based system. Aquaculture 503:118–127

    Article  CAS  Google Scholar 

  • Panigrahi A, Sundaram M, Saranya C, Swain S, Dash RR, Dayal JS (2019c) Carbohydrate sources deferentially influence growth performances, microbial dynamics and immunomodulation in Pacific white shrimp (Litopenaeus vannamei) under biofloc system. Fish Shellfish Immunol 86:1207–1216

    Article  CAS  PubMed  Google Scholar 

  • Panigrahi A, Esakkiraj P, Jayashree S, Saranya C, Das RR, Sundaram M (2019d) Colonization of enzymatic bacterial flora in biofloc grown shrimp Penaeus vannamei and evaluation of their beneficial effect. Aquac Int 27(6):1835–1846

    Article  CAS  Google Scholar 

  • Panigrahi A, Saranya C, Ambiganandam K, Sundaram M, Sivakumar MR (2020a) Evaluation of biofloc generation protocols to adopt high density nursery rearing of Penaeus vannamei for better growth performances, protective responses and immuno modulation in biofloc based technology. Aquaculture 522:735095

    Article  CAS  Google Scholar 

  • Panigrahi A, Das RR, Sivakumar MR, Saravanan A, Saranya C, Sudheer NS et al (2020b) Bio-augmentation of heterotrophic bacteria in biofloc system improves growth, survival, and immunity of Indian white shrimp Penaeus indicus. Fish Shellfish Immunol 98:477–487

    Article  CAS  PubMed  Google Scholar 

  • Porchas-Cornejo MA, Martínez-Córdova LR, Ramos-Trujillo L, Hernández-López J, Martínez-Porchas M, Mendoza-Cano F (2011a) Effect of promoted natural feed on the production, nutritional, and immunological parameters of Litopenaeus vannamei (Boone, 1931) semi-intensively farmed. Aquac Nutr 17(2):e622–e628

    Article  Google Scholar 

  • Porchas-Cornejo MA, Martínez-Córdova LR, Ramos-Trujillo L, Hernández-López J, Martínez-Porchas M, Mendoza-Cano F (2011b) Effect of promoted natural feed on the production, nutritional, and immunological parameters of Litopenaeus vannamei (Boone, 1931) semi-intensively farmed. Aquac Nutr 17(2):e622–e628

    Article  Google Scholar 

  • Promthale P, Pongtippatee P, Withyachumnarnkul B, Wongprasert K (2019) Bioflocs substituted fishmeal feed stimulates immune response and protects shrimp from Vibrio parahaemolyticus infection. Fish Shellfish Immunol 93:1067–1075

    Article  CAS  PubMed  Google Scholar 

  • Qiao G, Chen P, Sun Q, Zhang M, Zhang J, Li Z, Li Q (2020) Poly-β-hydroxybutyrate (PHB) in bioflocs alters intestinal microbial community structure, immune-related gene expression and early cyprinid herpesvirus 2 replication in gibel carp (Carassius auratus gibelio). Fish Shellfish Immunol 97:72–82

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Pandey PK, Aravind R, Vennila A, Bharti V, Purushothaman CS (2016) Effect of different biofloc system on water quality, biofloc composition and growth performance in L itopenaeus vannamei (Boone, 1931). Aquac Res 47(11):3432–3444

    Article  CAS  Google Scholar 

  • Ruiz P, Vidal JM, Sepúlveda D, Torres C, Villouta G, Carrasco C et al (2020) Overview and future perspectives of nitrifying bacteria on biofilters for recirculating aquaculture systems. Rev Aquac 12(3):1478–1494

    Google Scholar 

  • Sajali USBA, Atkinson NL, Desbois AP, Little DC, Murray FJ, Shinn AP (2019) Prophylactic properties of biofloc-or Nile tilapia-conditioned water against Vibrio parahaemolyticus infection of whiteleg shrimp (Penaeus vannamei). Aquaculture 498:496–502

    Article  Google Scholar 

  • Samocha TM, Patnaik S, Speed M, Ali AM, Burger JM, Almeida RV et al (2007) Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquac Eng 36(2):184–191

    Article  Google Scholar 

  • Saurabh S, Sahoo PK (2008) Lysozyme: an important defence molecule of fish innate immune system. Aquac Res 39(3):223–239

    Article  CAS  Google Scholar 

  • Schneider O, Sereti V, Eding EH, Verreth JAJ (2005) Analysis of nutrient flows in integrated intensive aquaculture systems. Aquac Eng 32(3–4):379–401

    Article  Google Scholar 

  • Serra FP, Gaona CA, Furtado PS, Poersch LH, Wasielesky W (2015) Use of different carbon sources for the biofloc system adopted during the nursery and grow-out culture of Litopenaeus vannamei. Aquac Int 23(6):1325–1339

    Article  CAS  Google Scholar 

  • Sigee DC (2005) Freshwater microbiology: biodiversity and dynamic interactions of microorganisms in the aquatic environment. Wiley, New York, 544 pp

    Google Scholar 

  • Silva UL, Vieira LC, Mello MVLD, França EJD, Falconi DR, Correia EDS (2018) Response of phytoplankton to different carbon sources and C: N ratios in tilapia fingerling culture with bioflocs. B Inst Pesca:1–8

    Google Scholar 

  • Stein LY, Klotz MG (2016) The nitrogen cycle. Curr Biol 26:94–98

    Article  Google Scholar 

  • Suita SM, Ballester ELC, Abreu PCOVD, Wasielesky Jr, W (2015) Dextrose as carbon source in the culture of Litopenaeus vannamei (Boone, 1931) in a zero exchange system

    Google Scholar 

  • Sullam KE, Essinger SD, Lozupone CA, O’Connor MP, Rosen GL, Knight ROB et al (2012) Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol Ecol 21(13):3363–3378

    Article  PubMed  Google Scholar 

  • Tepaamorndech S, Nookaew I, Higdon SM, Santiyanont P, Phromson M, Chantarasakha K et al (2020) Metagenomics in bioflocs and their effects on gut microbiome and immune responses in Pacific white shrimp. Fish Shellfish Immunol 106:733–741

    Article  CAS  PubMed  Google Scholar 

  • Tičina V, Katavić I, Grubišić L (2020) Marine aquaculture impacts on marine biota in oligotrophic environments of the mediterranean sea–a review. Front Marine Sci

    Book  Google Scholar 

  • Van der Marel M, Caspari N, Neuhaus H, Meyer W, Enss ML, Steinhagen D (2010) Changes in skin mucus of common carp, Cyprinus carpio L., after exposure to water with a high bacterial load. J Fish Dis 33(5):431–439

    Article  PubMed  Google Scholar 

  • Van Doan H, Lumsangkul C, Hoseinifar SH, Hung TQ, Stejskal V, Ringø E et al (2020) Administration of watermelon rind powder to Nile tilapia (Oreochromis niloticus) culture under biofloc system: effect on growth performance, innate immune response, and disease resistance. Aquaculture 735574

    Google Scholar 

  • Vazquez L, Alpuche J, Maldonado G, Agundis C, Pereyra-Morales A, Zenteno E (2009) Immunity mechanisms in crustaceans. Innate Immun 15(3):179–188

    Article  CAS  PubMed  Google Scholar 

  • Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. Pharmacy and therapeutics 40(4):277

    PubMed  PubMed Central  Google Scholar 

  • Verma AK, Rani AB, Rathore G, Saharan N, Gora AH (2016) Growth, non-specific immunity and disease resistance of Labeo rohita against Aeromonas hydrophila in biofloc systems using different carbon sources. Aquaculture 457:61–67

    Article  Google Scholar 

  • Vilani FG, Schveitzer R, da Fonseca Arantes R, do Nascimento Vieira F, do Espírito Santo CM, Seiffert WQ (2016) Strategies for water preparation in a biofloc system: effects of carbon source and fertilization dose on water quality and shrimp performance. Aquacult Eng 74:70–75

    Article  Google Scholar 

  • Wasielesky W Jr, Froes C, Fóes G, Krummenauer D, Lara G, Poersch L (2013) Nursery of Litopenaeus vannamei reared in a biofloc system: the effect of stocking densities and compensatory growth. J Shellfish Res 32(3):799–806

    Article  Google Scholar 

  • Wicks BJ, Joensen R, Tang Q, Randall DJ (2002) Swimming and ammonia toxicity in salmonids: the effect of sub lethal ammonia exposure on the swimming performance of coho salmon and the acute toxicity of ammonia in swimming and resting rainbow trout. Aquat Toxicol 59(1–2):55–69

    Article  CAS  PubMed  Google Scholar 

  • Xu WJ, Pan LQ (2014) Evaluation of dietary protein level on selected parameters of immune and antioxidant systems, and growth performance of juvenile Litopenaeus vannamei reared in zero-water exchange biofloc-based culture tanks. Aquaculture 426:181–188

    Article  Google Scholar 

  • Xu WJ, Pan LQ, Sun XH, Huang J (2013) Effects of bioflocs on water quality, and survival, growth and digestive enzyme activities of Litopenaeus vannamei (Boone) in zero-water exchange culture tanks. Aquac Res 44(7):1093–1102

    Article  Google Scholar 

  • Xu WJ, Morris TC, Samocha TM (2016) Effects of C/N ratio on biofloc development, water quality, and performance of Litopenaeus vannamei juveniles in a biofloc-based, high-density, zero-exchange, outdoor tank system. Aquaculture 453:169–175

    Article  CAS  Google Scholar 

  • Yin Y, Zhang P, Yue X, Du X, Li W, Yin Y et al (2018) Effect of sub-chronic exposure to lead (pb) and Bacillus subtilis on Carassius auratus gibelio: bioaccumulation, antioxidant responses and immune responses. Ecotoxicol Environ Saf 161:755–762

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Li L, Zhu R, Li M, Wu LF (2020a) Effects of bioflocs with different C/N ratios on growth, immunological parameters, antioxidants and culture water quality in Opsariichthys kaopingensis Dybowski. Aquac Res 51(2):805–815

    Article  CAS  Google Scholar 

  • Yu Z, Li L, Zhu R, Li M, Duan J, Wang JY et al (2020b) Monitoring of growth, digestive enzyme activity, immune response and water quality parameters of Golden crucian carp (Carassius auratus) in zero-water exchange tanks of biofloc systems. Aquaculture Reports 16:100283

    Article  Google Scholar 

  • Yuvarajan P (2020) Study on floc characteristics and bacterial count from biofloc-based genetically improved farmed tilapia culture system. Aquac Res

    Google Scholar 

  • Zeitoun MM, EL-Azrak KE-DM, Zaki MA, Nemat-Allah BR, Mehana E-SE (2016) Effects of ammonia toxicity on growth performance, cortisol, glucose and hematological response of Nile tilapia (Oreochromis niloticus). Aceh J Anim Sci 1(1):21–28

    Article  Google Scholar 

  • Zhang K, Pan L, Chen W, Wang C (2017) Effect of using sodium bicarbonate to adjust the pH to different levels on water quality, the growth and the immune response of shrimp Litopenaeus vannamei reared in zero-water exchange biofloc-based culture tanks. Aquac Res 48(3):1194–1208

    Article  CAS  Google Scholar 

  • Zhang M, Li M, Wang R, Qian Y (2018) Effects of acute ammonia toxicity on oxidative stress, immune response and apoptosis of juvenile yellow catfish Pelteobagrus fulvidraco and the mitigation of exogenous taurine. Fish Shellfish Immunol 79:313–320

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Pan L, Huang F, Wang C, Xu W (2016) Effects of different carbon sources on bioactive compound production of biofloc, immune response, antioxidant level, and growth performance of Litopenaeus vannamei in zero-water exchange culture tanks. J World Aquacult Soc 47(4):566–576

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshaya Panigrahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panigrahi, A., Palanichamy, E., Chakrapani, S., TN, V. (2021). Biofloc Technology: An Eco-Based Emerging Avenue in Aquaculture Health Management. In: Gupta, S.K., Giri, S.S. (eds) Biotechnological Advances in Aquaculture Health Management . Springer, Singapore. https://doi.org/10.1007/978-981-16-5195-3_12

Download citation

Publish with us

Policies and ethics