Skip to main content

Recent Understanding of Immunological Defence in Freshwater Pearl Mussel for Better Health Management

  • Chapter
  • First Online:
Biotechnological Advances in Aquaculture Health Management

Abstract

The production of cultured pearl represents a major industry in many countries including India. The species that belong to the genus Lamellidens, Hyriopsis and Cristaria are some of the important pearl-producing bivalve organisms in cultured condition. Due to the rising demand for cultured pearl, the intensification of culture practices of freshwater mussel is adopted by many aquaculture farms, resulting in disease outbreaks and economic losses. Due to filter-feeding behaviour, bivalves are sensitive to surrounding environments. In recent year, substantial strides have been taken up to explore the deeper understanding of immunological defence mechanisms of freshwater mussel. Many cellular and humoral parameters have been deciphered by various researchers. The updated knowledge of the defence system of mussel is considered as a potential intervention strategy in mussel farming to overcome diseases and make farming more profitable. This chapter focuses on recent information on major diseases and related defence mechanisms of mussels which may be of help for the unceasing expansion of aquaculture enterprises that encompasses cultured pearl production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adzigbli L, Hao R, Jiao Y, Deng Y, Du X, Wang Q, Huang R (2020) Immune response of pearl oysters to stress and diseases. Rev Aquac 12(2):513–523

    Article  Google Scholar 

  • Allam B, Paillard C (1998) Defense factors in clam extrapallial fluids. Dis Aquat Org 33(2):123–128

    Article  Google Scholar 

  • Allam B, Raftos D (2015) Immune responses to infectious diseases in bivalves. J Invertebr Pathol 131:121–136

    Article  CAS  PubMed  Google Scholar 

  • Anisimova AA (2013) Morphofunctional parameters of hemocytes in the assessment of the physiological status of bivalves. Russ J Mar Biol 39(6):381–391

    Article  CAS  Google Scholar 

  • Aoki T, Hirono I (2006) Immune relevant genes of Japanese flounder, Paralichthys olivaceus. Compar Biochem Physiol D: Genom Proteom 1(1):115–121

    Google Scholar 

  • Bai Z, Zhao L, Chen X, Li Q, Li J (2016) A galectin from Hyriopsis cumingii involved in the innate immune response against to pathogenic microorganism and its expression profiling during pearl sac formation. Fish Shellfish Immunol 56:127–135

    Article  CAS  PubMed  Google Scholar 

  • Bassim S, Genard B, Gauthier-Clerc S, Moraga D, Tremblay R (2015) Ontogeny of bivalve immunity: assessing the potential of next-generation sequencing techniques. Rev Aquac 7(3):197–217

    Article  Google Scholar 

  • Beintema JJ, Terwisscha van Scheltinga AC (1996) Plant lysozymes. EXS 75:75–86

    CAS  PubMed  Google Scholar 

  • Bouallegui Y (2019) Immunity in mussels: an overview of molecular components and mechanisms with a focus on the functional defenses. Fish Shellfish Immunol 89:158–169

    Article  CAS  PubMed  Google Scholar 

  • Brahma N, Gupta A (2020) Acute toxicity of lead in fresh water bivalves Lamellidens jenkinsianus obesa and Parreysia (Parreysia) corrugata with evaluation of sublethal effects on acetylcholinesterase and catalase activity, lipid peroxidation, and behavior. Ecotoxicol Environ Saf 189:109939

    Article  CAS  PubMed  Google Scholar 

  • Brun NT, Ross NW, Boghen AD (2000) Changes in the electrophoretic profiles of gill mucus proteases of the eastern oyster Crassostrea virginica in response to infection by the turbellarian Urastoma cyprinae. J Invertebr Pathol 75(2):163–170

    Article  CAS  PubMed  Google Scholar 

  • Cahill MM (1990) A review virulence factors in motile Aeromonas species. J Appl Bacteriol 69(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty S, Ray M, Ray S (2013) Cell to organ: physiological, immunotoxic and oxidative stress responses of Lamellidens marginalis to inorganic arsenite. Ecotoxicol Environ Saf 94:153–163

    Article  CAS  PubMed  Google Scholar 

  • Chand RK, Sahoo PK (2006) Effect of nitrite on the immune response of freshwater prawn Macrobrachium malcolmsonii and its susceptibility to Aeromonas hydrophila. Aquaculture 258(1–4):150–156

    Article  CAS  Google Scholar 

  • Chen J, Zhu N, Kong L, Bei Y, Zheng T, Ding X, He Z (2013) First case of soft shell disease in Chinese soft-shelled turtle (Trionyx sinens) associated with Aeromonas sobria–A. veronii complex. Aquaculture 406:62–67

    Article  Google Scholar 

  • Cheng TC (1996) Hemocytes: forms and functions. The eastern oyster Crassostrea virginica. Maryland Sea Grant Book, College Park, MD. pp. 299–333

    Google Scholar 

  • Christophides GK, Zdobnov E, Barillas-Mury C, Birney E, Blandin S, Blass C, Brey PT, Collins FH, Danielli A, Dimopoulos G, Kafatos FC (2002) Immunity-related genes and gene families in Anopheles gambiae. Science 298(5591):159–165

    Article  CAS  PubMed  Google Scholar 

  • Dahanayake PS, Hossain S, Wickramanayake MVKS, Heo GJ (2019) Antibiotic and heavy metal resistance genes in Aeromonas spp. isolated from marketed Manila clam (Ruditapes philippinarum) in Korea. J Appl Microbiol 127(3):941–952

    Article  CAS  PubMed  Google Scholar 

  • Dai W, Wu D, Zhang M, Wen C, Xie Y, Hu B, Jian S, Zeng M, Tao Z (2015) Molecular cloning and functional characterization of a novel i-type lysozyme in the freshwater mussel Cristaria plicata. Microbiol Immunol 59(12):744–755

    Article  CAS  PubMed  Google Scholar 

  • Dai YJ, Hui KM, Zhang YH, Liu Y, Wang YQ, Zhao LJ, Lin L, Chai LQ, Wei S, Lan JF (2017) Three STATs are involved in the regulation of the expression of antimicrobial peptides in the triangle sail mussel, Hyriopsis cumingii. Fish Shellfish Immunol 63:181–188

    Article  CAS  PubMed  Google Scholar 

  • Danilova N (2006) The evolution of immune mechanisms. J Exp Zool B Mol Dev Evol 306(6):496–520

    Article  PubMed  Google Scholar 

  • De Silva BCJ, Hossain S, Dahanayake PS, Heo GJ (2019) Aeromonas spp. from marketed yesso scallop (Patinopecten yessoensis): molecular characterization, phylogenetic analysis, virulence properties and antimicrobial susceptibility. J Appl Microbiol 126(1):288–299

    Article  PubMed  Google Scholar 

  • Díaz GA (2010) Defensins and cystein rich peptides: two types of antimicrobial peptides in marine molluscs. Invertebr Surviv J 7(2):157–164

    Google Scholar 

  • Duan Y, Zhang J, Dong H, Wang Y, Liu Q, Li H (2015) Oxidative stress response of the black tiger shrimp Penaeus monodon to Vibrio parahaemolyticus challenge. Fish Shellfish Immunol 46(2):354–365

    Article  CAS  PubMed  Google Scholar 

  • Dunkelberger JR, Song WC (2010) Complement and its role in innate and adaptive immune responses. Cell Res 20(1):34–50

    Article  CAS  PubMed  Google Scholar 

  • Estari M, Satyanarayana J, Kumar BS, Bikshapathi T, Reddy AS, Venkanna L (2011) In vitro study of antimicrobial activity in freshwater mussel (Lamellidens marginalis) extracts. Biol Med 3(2):191–195

    Google Scholar 

  • FAO (2000) Asia regional technical guidelines on health management for the responsible movement of live aquatic animals and the Beijing consensus and implementation strategy. Fisheries Technical Paper 402:1–53

    Google Scholar 

  • Fastrez J (1996) Phage lysozymes. EXS 75:35–64

    CAS  PubMed  Google Scholar 

  • Fisher WS (2004) Relationship of amebocytes and terrestrial elements to adult shell deposition in eastern oysters. J Shellfish Res 23(2):353–368

    Google Scholar 

  • Fiske D, Shepherd J (2007) Continuity and change in Chinese freshwater pearl culture. Gems & Gemology 43(2)

    Google Scholar 

  • Freer A, Bridgett S, Jiang J, Cusack M (2014) Biomineral proteins from Mytilus edulis mantle tissue transcriptome. Mar Biotechnol 16(1):34–45

    Article  CAS  Google Scholar 

  • Gerdol M, Venier P (2015) An updated molecular basis for mussel immunity. Fish Shellfish Immunol 46(1):17–38

    Article  CAS  PubMed  Google Scholar 

  • Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jéhanno M, Viala J, Tedin K, Taha MK, Labigne A, Zäthringer U, Philpott DJ (2003) Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science 300(5625):1584–1587

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Chiarri M, Guo X, Tanguy A, He Y, Proestou D (2015) The use of-omic tools in the study of disease processes in marine bivalve mollusks. J Invertebr Pathol 131:137–154

    Article  CAS  PubMed  Google Scholar 

  • Grizzle JM, Brunner CJ (2009) Infectious diseases of freshwater mussels and other freshwater bivalve mollusks. Rev Fish Sci 17(4):425–467

    Article  Google Scholar 

  • Ho YS, Xiong Y, Ma W, Spector A, Ho DS (2004) Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. J Biol Chem 279(31):32804–32812

    Article  CAS  PubMed  Google Scholar 

  • Holmblad T, Söderhäll K (1999) Cell adhesion molecules and antioxidative enzymes in a crustacean, possible role in immunity. Aquaculture 172(1–2):111–123

    Article  CAS  Google Scholar 

  • Hong XT, Xiang LX, Shao JZ (2006) The immunostimulating effect of bacterial genomic DNA on the innate immune responses of bivalve mussel, Hyriopsis cumingii lea. Fish Shellfish Immunol 21(4):357–364

    Article  CAS  PubMed  Google Scholar 

  • Hossain S, Heo GJ (2021) Ornamental fish: a potential source of pathogenic and multidrug-resistant motile Aeromonas spp. Lett Appl Microbiol 72(1):2–12

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Wen C, Zhang M, Jian S, Yang G (2017) Identification and characterization of two LBP/BPI genes involved in innate immunity from Hyriopsis cumingii. Fish Shellfish Immunol 60:436–446

    Article  CAS  PubMed  Google Scholar 

  • Hu M, Wu F, Yuan M, Li Q, Gu Y, Wang Y, Liu Q (2015) Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to harmful algae Microcystis aeruginosa and hypoxia. Chemosphere 139:541–549

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Chi Q, Liu Q, Wang D, Zhang Y, Li S (2019) Atmospheric H2S triggers immune damage by activating the TLR-7/MyD88/NF-κB pathway and NLRP3 inflammasome in broiler thymus. Chemosphere 237:124427

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Bai Z, Shen J, Zhao L, Li J (2018) Identification of tumor necrosis factor receptor-associated factor 6 in the pearl mussel Hyriopsis cumingii and its involvement in innate immunity and pearl sac formation. Fish Shellfish Immunol 80:335–347

    Article  CAS  PubMed  Google Scholar 

  • Huang XD, Wei GJ, He MX (2015) Cloning and gene expression of signal transducers and activators of transcription (STAT) homologue provide new insights into the immune response and nucleus graft of the pearl oyster Pinctada fucata. Fish Shellfish Immunol 47(2):847–854

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Ren Q (2019) HcCUB-Lec, a newly identified C-type lectin that contains a distinct CUB domain and participates in the immune defense of the triangle sail mussel Hyriopsis cumingii. Dev Comp Immunol 93:66–77

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Hui KM, Ren Q (2021) Expression and functional characterization of the CUB domain-containing protein from the triangle sail mussel (Hyriopsis cumingii) in response to pathogenic infection. Comp Biochem Physiol B: Biochem Mol Biol 251:110521

    Article  CAS  Google Scholar 

  • Huang Y, Wang W, Ren Q (2016) Identification and function of a novel C1q domain-containing (C1qDC) protein in triangle-shell pearl mussel (Hyriopsis cumingii). Fish Shellfish Immunol 58:612–621

    Article  CAS  PubMed  Google Scholar 

  • Itoh N, Takahashi KG (2008) Distribution of multiple peptidoglycan recognition proteins in the tissues of Pacific oyster, Crassostrea gigas. Comp Biochem Physiol B: Biochem Mol Biol 150(4):409–417

    Article  Google Scholar 

  • Jackson DJ, McDougall C, Woodcroft B, Moase P, Rose RA, Kube M, Reinhardt R, Rokhsar DS, Montagnani C, Joubert C, Degnan BM (2010) Parallel evolution of nacre building gene sets in molluscs. Mol Biol Evol 27(3):591–608

    Article  CAS  PubMed  Google Scholar 

  • Janakiram K (2003) Freshwater pearl culture technology development in India. J Appl Aquac 13(3–4):341–349

    Article  Google Scholar 

  • Jiao Y, Gu Z, Luo S, Deng Y (2020) Evolutionary and functional analysis of MyD88 genes in pearl oyster Pinctada fucata martensii. Fish Shellfish Immunol 99:322–330

    Article  CAS  PubMed  Google Scholar 

  • Jin C, Liu XJ, Li JL (2019) A Kunitz proteinase inhibitor (HcKuPI) participated in antimicrobial process during pearl sac formation and induced the overgrowth of calcium carbonate in Hyriopsis cumingii. Fish Shellfish Immunol 89:437–447

    Article  CAS  PubMed  Google Scholar 

  • Jiravanichpaisal P, Roos S, Edsman L, Liu H, Söderhäll K (2009) A highly virulent pathogen, Aeromonas hydrophila, from the freshwater crayfish Pacifastacus leniusculus. J Invertebr Pathol 101(1):56–66

    Article  PubMed  Google Scholar 

  • Johansson MW, Soderhall K (1989) Cellular immunity in crustaceans and the proPO system. Parasitol Today 5(6):171–176

    Article  CAS  PubMed  Google Scholar 

  • Jollès P, Jollès J (1984) What's new in lysozyme research? Mol Cell Biochem 63(2):165–189

    Article  PubMed  Google Scholar 

  • Kong P, Wang L, Zhang H, Song X, Zhou Z, Yang J, Qiu L, Wang L, Song L (2011) A novel C-type lectin from bay scallop Argopecten irradians (AiCTL-7) agglutinating fungi with mannose specificity. Fish Shellfish Immunol 30(3):836–844

    Article  CAS  PubMed  Google Scholar 

  • Kongchum P, Hallerman EM, Hulata G, David L, Palti Y (2011) Molecular cloning, characterization and expression analysis of TLR9, MyD88 and TRAF6 genes in common carp (Cyprinus carpio). Fish Shellfish Immunol 30(1):361–371

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Saurabh S, Pal AK, Sahu NP, Arasu ART (2014) Stress mitigating and growth enhancing effect of dietary tryptophan in rohu (Labeo rohita, Hamilton, 1822) fingerlings. Fish Physiol Biochem 40(5):1325–1338

    Article  CAS  PubMed  Google Scholar 

  • Kutlu M, Susuz F (2004) Biochemical properties of glutathione peroxidase in Gammarus pulex. Bull Environ Contam Toxicol 73(2):432–436

    Article  CAS  PubMed  Google Scholar 

  • Le Pabic C, Goux D, Guillamin M, Safi G, Lebel JM, Koueta N, Serpentini A (2014) Hemocyte morphology and phagocytic activity in the common cuttlefish (Sepia officinalis). Fish Shellfish Immunol 40(2):362–373

    Article  PubMed  Google Scholar 

  • Lei Z, Tiao-Yi X, Jie H, Liang-Ying D, Xiao-Yan L (2011) Histopathological examination of bivalve mussel Hyriopsis cumingii lea artificially infected by virus. Acta Hydrobiologica Sinica 35(4):666–671

    Google Scholar 

  • Lelong C, Badariotti F, Le Quere H, Rodet F, Dubos MP, Favrel P (2007) Cg-TGF-β, a TGF-β/activin homologue in the Pacific oyster Crassostrea gigas, is involved in immunity against Gram-negative microbial infection. Dev Comp Immunol 31(1):30–38

    Article  CAS  PubMed  Google Scholar 

  • Leulier F, Lemaitre B (2008) Toll-like receptors—taking an evolutionary approach. Nat Rev Genet 9(3):165–178

    Article  CAS  PubMed  Google Scholar 

  • Li HJ, Yang Q, Gao XG, Su H, Wang J, He CB (2012) Identification and expression of a putative LPS-induced TNF-α factor from Asiatic hard clam Meretrix meretrix. Mol Biol Rep 39(2):865–871

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhang Y, Mao F, Lin Y, Xiao S, Xiang Z, Ma H, Zhang Y, Yu Z (2018) The first morphologic and functional characterization of hemocytes in Hong Kong oyster, Crassostrea hongkongensis. Fish Shellfish Immunol 81:423–429

    Article  CAS  PubMed  Google Scholar 

  • Li W, Shi Z, He X (2010) Study on immune regulation in Hyriopsis cumingii lea: effect of pearl-nucleus insertion in the visceral mass on immune factors present in the hemolymph. Fish Shellfish Immunol 28(5–6):789–794

    Article  CAS  PubMed  Google Scholar 

  • Liu CY, Song YY, Ren HN, Sun GG, Liu RD, Jiang P, Long SR, Zhang X, Wang ZQ, Cui J (2017) Cloning and expression of a Trichinella spiralis putative glutathione S-transferase and its elicited protective immunity against challenge infections. Parasit Vectors 10(1):1–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Li L, Zheng L, Fu P, Wang Y, Nguyen H, Shen X, Sui Y (2020) Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to harmful algae Microcystis aeruginosa and high pH. Chemosphere 243:125241

    Article  CAS  PubMed  Google Scholar 

  • Livingstone, D. R., Martinez, P. G., Michel, X., Narbonne, J. F., O'hara, S., Ribera, D., & Winston, G. W. (1990). Oxyradical production as a pollution-mediated mechanism of toxicity in the common mussel, Mytilus edulis L., and other molluscs. Functional ecology, 415-424

    Google Scholar 

  • Luna-Acosta A, Breitwieser M, Renault T, Thomas-Guyon H (2017) Recent findings on phenoloxidases in bivalves. Mar Pollut Bull 122(1–2):5–16

    Article  CAS  PubMed  Google Scholar 

  • Magor BG, Magor KE (2001) Evolution of effectors and receptors of innate immunity. Dev Comp Immunol 25(8–9):651–682

    Article  CAS  PubMed  Google Scholar 

  • Mao F, Li J, Zhang Y, Xiang Z, Zhang Y, Yu Z (2017) Molecular cloning and functional analysis of tumor necrosis factor receptor-associated factor 6 (TRAF6) in Crossastrea gigas. Fish Shellfish Immunol 68:37–45

    Article  CAS  PubMed  Google Scholar 

  • McDade JE, Tripp MR (1967) Lysozyme in the hemolymph of the oyster, Crassostrea virginica. J Invertebr Pathol 9(4):531–535

    Article  Google Scholar 

  • Medzhitov R, Janeway CA (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296(5566):298–300

    Article  CAS  PubMed  Google Scholar 

  • Munford RS (2005) Invited review: detoxifying endotoxin: time, place and person. J Endotoxin Res 11(2):69–84

    CAS  PubMed  Google Scholar 

  • Muradian KK, Utko NA, Fraifeld V, Mozzhukhina TG, Pishel IN, Litoshenko AY (2002) Superoxide dismutase, catalase and glutathione peroxidase activities in the liver of young and old mice: linear regression and correlation. Arch Gerontol Geriatr 35(3):205–214

    Article  CAS  PubMed  Google Scholar 

  • Nappi AJ, Vass E (1993) Melanogenesis and the generation of cytotoxic molecules during insect cellular immune reactions. Pigment Cell Res 6(3):117–126

    Article  CAS  PubMed  Google Scholar 

  • Nilsen IW, Myrnes B (2001) The gene of chlamysin, a marine invertebrate-type lysozyme, is organized similar to vertebrate but different from invertebrate chicken-type lysozyme genes. Gene 269(1–2):27–32

    Article  CAS  PubMed  Google Scholar 

  • Novoa B, Figueras A (2012) Zebrafish: model for the study of inflammation and the innate immune response to infectious diseases. Curr Top Innate Immunity II:253–275

    Google Scholar 

  • Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287(5785):795–801

    Article  PubMed  Google Scholar 

  • Olafsen JA, Mikkelsen HV, Giæver HM, Hansen GH (1993) Indigenous bacteria in hemolymph and tissues of marine bivalves at low temperatures. Appl Environ Microbiol 59(6):1848–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park H, Ahn IY, Kim H, Lee J, Shin SC (2009) Glutathione S-transferase as a biomarker in the Antarctic bivalve Laternula elliptica after exposure to the polychlorinated biphenyl mixture Aroclor 1254. Comp Biochem Physiol C: Toxicol Pharmacol 150(4):528–536

    Google Scholar 

  • Patnaik BB, Wang TH, Kang SW, Hwang HJ, Park SY, Park EB, Chung JM, Song DK, Kim C, Kim S, Lee YS (2016) Sequencing, de novo assembly, and annotation of the transcriptome of the endangered freshwater pearl bivalve, Cristaria plicata, provides novel insights into functional genes and marker discovery. PLoS One 11(2):e0148622

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul A, Pattanayak S, Pradhan S, Saurabh S, Sahoo PK (2018) First record of the leech, Glossiphonia complanata (Linnaeus, 1758) infection in freshwater pearl mussel Lamellidens marginalis (Lamarck, 1819). Ind J Fish 65(3):126–129

    Google Scholar 

  • Peng K, Wang JH, Sheng JQ, Zeng LG, Hong YJ (2012) Molecular characterization and immune analysis of a defensin from freshwater pearl mussel, Hyriopsis schlegelii. Aquaculture 334:45–50

    Article  Google Scholar 

  • Philipp EE, Kraemer L, Melzner F, Poustka AJ, Thieme S, Findeisen U, Schreiber S, Rosenstiel P (2012) Massively parallel RNA sequencing identifies a complex immune gene repertoire in the lophotrochozoan Mytilus edulis. PLoS One 7(3):e33091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pradhan S, Dey SS, Samantaray S, Padhi N, Tiwari PK, Saurabh S (2019) Efficacy of certain chemicals against leech, Glossiphonia complanata (L) on freshwater pearl mussel Lamellidens marginalis (L). J Entomol Zoolog Stud 7(6):637–641

    Google Scholar 

  • Prager EM, Jolles P (1996) Animal lysozymes C and G: an overview. EXS 75:9–31

    CAS  PubMed  Google Scholar 

  • Qiu L, Song L, Yu Y, Zhao J, Wang L, Zhang Q (2009) Identification and expression of TRAF6 (TNF receptor-associated factor 6) gene in Zhikong scallop Chlamys farreri. Fish Shellfish Immunol 26(3):359–367

    Article  CAS  PubMed  Google Scholar 

  • Qu C, Liu S, Tang Z, Li J, Liao Z, Qi P (2019) Response of a novel selenium-dependent glutathione peroxidase from thick shell mussel Mytilus coruscus exposed to lipopolysaccharide, copper and benzo [α] pyrene. Fish Shellfish Immunol 89:595–602

    Article  CAS  PubMed  Google Scholar 

  • Ray A, Gautam A, Das S, Pal K, Das S, Karmakar P, Ray M, Ray S (2020) Effects of copper oxide nanoparticle on gill filtration rate, respiration rate, hemocyte associated immune parameters and oxidative status of an Indian freshwater mussel. Comp Biochem Physiol C: Toxicol Pharmacol 237:108855

    CAS  Google Scholar 

  • Rebl A, Goldammer T, Seyfert HM (2010) Toll-like receptor signaling in bony fish. Vet Immunol Immunopathol 134(3–4):139–150

    Article  CAS  PubMed  Google Scholar 

  • Ren Q, Chen YH, Ding ZF, Huang Y, Shi YR (2014) Identification and function of two myeloid differentiation factor 88 variants in triangle-shell pearl mussel (Hyriopsis cumingii). Dev Comp Immunol 42(2):286–293

    Article  CAS  PubMed  Google Scholar 

  • Ren Q, Li M, Zhang CY, Chen KP (2011) Six defensins from the triangle-shell pearl mussel Hyriopsis cumingii. Fish Shellfish Immunol 31(6):1232–1238

    Article  CAS  PubMed  Google Scholar 

  • Ren Q, Qi YL, Hui KM, Zhang Z, Zhang CY, Wang W (2012) Four invertebrate-type lysozyme genes from triangle-shell pearl mussel (Hyriopsis cumingii). Fish Shellfish Immunol 33(4):909–915

    Article  CAS  PubMed  Google Scholar 

  • Ren Q, Zhong X, Yin SW, Hao FY, Hui KM, Zhang Z, Zhang CY, Yu XQ, Wang W (2013) The first toll receptor from the triangle-shell pearl mussel Hyriopsis cumingii. Fish Shellfish Immunol 34(5):1287–1293

    Article  CAS  PubMed  Google Scholar 

  • Ricklin D, Reis ES, Lambris JD (2016) Complement in disease: a defence system turning offensive. Nat Rev Nephrol 12(7):383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosani U, Shapiro M, Venier P, Allam B (2019) A needle in a haystack: tracing bivalve-associated viruses in high-throughput transcriptomic data. Viruses 11(3):205

    Article  CAS  PubMed Central  Google Scholar 

  • Sahoo BR (2020) Structure of fish toll-like receptors (TLR) and NOD-like receptors (NLR). Int J Biol Macromol 161:1602–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahoo PK (2006) Innate/natural resistance and non-lymphoid defence mechanisms in fish. In: Swain P, Sahoo PK, Ayyappan S (eds) Fish and shellfish immunology: an introduction. Narendra Publishing House, Delhi, pp 13–24

    Google Scholar 

  • Sahoo PK, Mahapatra KD, Saha JN, Barat A, Sahoo M, Mohanty BR, Gjerde B, Ødegård J, Rye M, Salte R (2008) Family association between immune parameters and resistance to Aeromonas hydrophila infection in the Indian major carp, Labeo rohita. Fish Shellfish Immunol 25(1–2):163–169

    Article  CAS  PubMed  Google Scholar 

  • Sarma JV, Ward PA (2011) The complement system. Cell Tissue Res 343(1):227–235

    Article  CAS  PubMed  Google Scholar 

  • Saurabh S, Sahoo PK (2008a) Lysozyme: an important defence molecule of fish innate immune system. Aquac Res 39(3):223–239

    Article  CAS  Google Scholar 

  • Saurabh S, Sahoo PK (2008b) Major diseases and the defence mechanism in giant freshwater prawn, Macrobrachium rosenbergii (de Man). Proc Nat Acad Sci India B 78:103–121

    Google Scholar 

  • Saurabh S, Mohanty BR, Sahoo PK (2011) Expression of immune-related genes in rohu Labeo rohita (Hamilton) by experimental freshwater lice Argulus siamensis (Wilson) infection. Vet Parasitol 175(1–2):119–128

    Article  CAS  PubMed  Google Scholar 

  • Saurabh S, Mohanty UL, Mohanty J, Jayasankar P (2014) Pearl culture technology in freshwater environment. In: Gupta SK, Bharti PK (eds) Aquaculture and fisheries environment. Discovery Publishing House, New Delhi, India, pp 51–78

    Google Scholar 

  • Sharon N, Lis H (2004) History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14(11):53R–62R

    Article  CAS  PubMed  Google Scholar 

  • Sindermann CJ (1971) Internal defences of crustacean: a review. Fish Bull 69:455–489

    Google Scholar 

  • Söderhäll K, Cerenius L (1992) Crustacean immunity. Annu Rev Fish Dis 2:3–23

    Article  Google Scholar 

  • Soldatov AA, Gostyukhina OL, Golovina IV (2007) Antioxidant enzyme complex of tissues of the bivalve Mytilus galloprovincialis lam. Under normal and oxidative-stress conditions: a review. Appl Biochem Microbiol 43(5):556–562

    Article  CAS  Google Scholar 

  • Song L, Wang L, Qiu L, Zhang H (2010) Bivalve immunity. Invertebrate Immunity:44–65

    Google Scholar 

  • Song YL, Hsieh YT (1994) Immunostimulation of tiger shrimp (Penaeus monodon) hemocytes for generation of microbicidal substances: analysis of reactive oxygen species. Dev Comp Immunol 18(3):201–209

    Article  CAS  PubMed  Google Scholar 

  • Sung HH, Hwang SF, Tasi FM (2000) Responses of giant freshwater prawn (Macrobrachium rosenbergii) to challenge by two strains of Aeromonas spp. J Invertebr Pathol 76(4):278–284

    Article  CAS  PubMed  Google Scholar 

  • Tailor P, Tamura T, Ozato K (2006) IRF family proteins and type I interferon induction in dendritic cells. Cell Res 16(2):134–140

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S (1999) Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 11(4):443–451

    Article  CAS  PubMed  Google Scholar 

  • Walker JR, Ferrar PH (1998) Diphenol oxidases, enzyme-catalysed browning and plant disease resistance. Biotechnol Genet Eng Rev 15(1):457–498

    Article  CAS  PubMed  Google Scholar 

  • Walsh MC, Lee J, Choi Y (2015) Tumor necrosis factor receptor-associated factor 6 (TRAF 6) regulation of development, function, and homeostasis of the immune system. Immunol Rev 266(1):72–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Li X, Li J (2013a) Association between SNPs in interferon regulatory factor 2 (IRF-2) gene and resistance to Aeromonas hydrophila in freshwater mussel Hyriopsis cumingii. Fish Shellfish Immunol 34(5):1366–1371

    Article  CAS  PubMed  Google Scholar 

  • Wang GL, Li XL, Li JL (2013b) Significant association between SNP s in the superoxide dismutase 3, extracellular (SOD 3) gene and resistance to Aeromonas hydrophila in the freshwater mussel Hyriopsis cumingii. Anim Genet 44(6):693–702

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Qiu L, Zhou Z, Song L (2013c) Research progress on the mollusc immunity in China. Dev Comp Immunol 39(1–2):2–10

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Qin M, Chen X, Lu Y, Zhao X, Wu Y, Shi J, Li Y, Zhang R (2019) Molecular cloning of complement component C3 gene from pearl mussel, Hyriopsis cumingii and analysis of the gene expression in response to tissue transplantation. Fish Shellfish Immunol 94:288–293

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Wang J, Wang G, Wu C, Li J (2017) Molecular cloning, sequencing, and expression profiles of heat shock protein 90 (HSP90) in Hyriopsis cumingii exposed to different stressors: temperature, cadmium and Aeromonas hydrophila. Aquac Fish 2(2):59–66

    Article  Google Scholar 

  • Wang Y, Hu M, Chiang MWL, Shin PKS, Cheung SG (2012) Characterization of subpopulations and immune-related parameters of hemocytes in the green-lipped mussel Perna viridis. Fish Shellfish Immunol 32(3):381–390

    Article  CAS  PubMed  Google Scholar 

  • Wen R, Li F, Sun Z, Li S, Xiang J (2013) Shrimp MyD88 responsive to bacteria and white spot syndrome virus. Fish Shellfish Immunol 34(2):574–581

    Article  CAS  PubMed  Google Scholar 

  • Wilbur KM (1964) Shell formation and regeneration. In: Wilbur KM, Yonge CM (eds) Physiology of Mollusca, vol 1. Academic, New York, pp 243–282

    Chapter  Google Scholar 

  • Wu D, Hu B, Wen C, Lin G, Tao Z, Hu X, Xie Y (2013a) Gene identification and recombinant protein of a lysozyme from freshwater mussel Cristaria plicata. Fish Shellfish Immunol 34(5):1033–1041

    Article  CAS  PubMed  Google Scholar 

  • Wu SZ, Huang XD, Li Q, He MX (2013b) Interleukin-17 in pearl oyster (Pinctada fucata): molecular cloning and functional characterization. Fish Shellfish Immunol 34(5):1050–1056

    Article  PubMed  Google Scholar 

  • Wu F, Kong H, Shang Y, Zhou Z, Gul Y, Liu Q, Hu M (2017a) Histopathological alterations in triangle sail mussel (Hyriopsis cumingii) exposed to toxic cyanobacteria (Microcystis aeruginosa) under hypoxia. Aquaculture 467:182–189

    Article  CAS  Google Scholar 

  • Wu Y, Liang H, Wang Z, Lei Q, Xia L (2017b) A novel toll-like receptor from the pearl oyster Pinctada fucata martensii is induced in response to stress. Comp Biochem Physiol B: Biochem Mol Biol 214:19–26

    Article  CAS  Google Scholar 

  • Xia H, Yang P, Liu L, Luo Y, Sun Y, Wang W, Yuan M, Liu W (2019) Effect of ammonia exposure on the non-specific immunity of fresh water pearl mussel Hyriopsis cumingii. Isr J Aquacu-Bamidg 71:20962

    Google Scholar 

  • Xie Y, Hu B, Wen C, Mu S (2011) Morphology and phagocytic ability of hemocytes from Cristaria plicata. Aquaculture 310(3–4):245–251

    Article  Google Scholar 

  • Xing J, Espinosa EP, Perrigault M, Allam B (2011) Identification, molecular characterization and expression analysis of a mucosal C-type lectin in the eastern oyster, Crassostrea virginica. Fish Shellfish Immunol 30(3):851–858

    Article  Google Scholar 

  • Xu K, Zhang Z, Xu Z, Tang Z, Liu L, Lu Z, Qi P (2019) A novel invertebrate toll-like receptor is involved in TLR mediated signal pathway of thick shell mussel Mytilus coruscus. Dev Comp Immunol 97:11–19

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Wang G, Yuan H, Chai Y, Xiao Z (2010) cDNA sequence and expression analysis of an antimicrobial peptide, theromacin, in the triangle-shell pearl mussel Hyriopsis cumingii. Comp Biochem Physiol B: Biochem Mol Biol 157(1):119–126

    Article  Google Scholar 

  • Yang C, Wang L, Jia Z, Yi Q, Xu Q, Wang W, Gong C, Liu C, Song L (2017) Two short peptidoglycan recognition proteins from Crassostrea gigas with similar structure exhibited different PAMP binding activity. Dev Comp Immunol 70:9–18

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Han Y, Liu Y, Cao R, Wang Q, Dong Z, Liu H, Zhang X, Zhang Q, Zhao J (2019) A peptidoglycan recognition protein involved in immune recognition and immune defenses in Ruditapes philippinarum. Fish Shellfish Immunol 88:441–448

    Article  CAS  PubMed  Google Scholar 

  • Yang DQ, Su ZL, Qiao C, Zhang Z, Wang JL, Li F, Liu XS (2013) Identification and characterization of two peptidoglycan recognition proteins with zinc-dependent antibacterial activity from the cotton bollworm, Helicoverpa armigera. Dev Comp Immunol 39(4):343–351

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Gao X, Li X, Zhang H, Chen N, Zhang Y, Liu X, Zhang X (2018) Comparative transcriptome analysis of red swamp crayfish (Procambarus clarkia) hepatopancreas in response to WSSV and Aeromonas hydrophila infection. Fish Shellfish Immunol 83:397–405

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Li W, Du C, Liu Y, Ma S, Yu X, Yao W, Wu Z (2020) Emerging pathogens caused disease and mortality in freshwater mussels, Hyriopsis cumingii, in China. Aquac Res 51(12):5096–5105

    Article  CAS  Google Scholar 

  • Yang Q, Yu X, Du C, Ni X, Li W, Yao W, Wu Z (2021) Bacterial challenge undermines the innate immune response in Hyriopsis cumingii. Aquaculture 530:735783

    Article  CAS  Google Scholar 

  • Yoshida H, Kinoshita K, Ashida M (1996) Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J Biol Chem 271(23):13854–13860

    Article  CAS  PubMed  Google Scholar 

  • Yoshino TP (1986) Surface membrane components of circulating invertebrate blood cells and their role in internal defense. In: Immunity in invertebrates. Springer, Berlin, Heidelberg, pp 13–24

    Chapter  Google Scholar 

  • Zhang D, Jiang S, Hu Y, Cui S, Guo H, Wu K, Li Y, Su T (2011) A multidomain galectin involved in innate immune response of pearl oyster Pinctada fucata. Dev Comp Immunol 35(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Ma J, Jiang S (2014) Molecular characterization, expression and function analysis of a five-domain Kazal-type serine proteinase inhibitor from pearl oyster Pinctada fucata. Fish Shellfish Immunol 37(1):115–121

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Fang X, Guo X, Li LI, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H, Wang J (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490(7418):49–54

    Article  CAS  PubMed  Google Scholar 

  • Zhang HW, Huang Y, Man X, Wang Y, Hui KM, Yin SW, Zhang XW (2017) HcToll3 was involved in anti-vibrio defense in freshwater pearl mussel, Hyriopsis cumingii. Fish Shellfish Immunol 63:189–195

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Wang M, Xia N, Yu S, Chen Y, Wang N (2016) Cloning and analysis of gene expression of interleukin-17 homolog in triangle-shell pearl mussel, Hyriopsis cumingii during pearl sac formation. Fish Shellfish Immunol 52:151–156

    Article  CAS  PubMed  Google Scholar 

  • Zhang SM, Zeng Y, Loker ES (2007) Characterization of immune genes from the schistosome host snail Biomphalaria glabrata that encode peptidoglycan recognition proteins and Gram-negative bacteria binding protein. Immunogenetics 59(11):883–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Li J, Yu F, He X, Yu Z (2013) Allograft inflammatory factor-1 stimulates hemocyte immune activation by enhancing phagocytosis and expression of inflammatory cytokines in Crassostrea gigas. Fish Shellfish Immunol 34(5):1071–1077

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZG (1986) Study on the mussel Hyriopsis cumingii plague I. a new viral infections disease [J]. Acta Microbiol Sin 26(4):308–312

    Google Scholar 

  • Zhang ZG (1987) Study on the mussel Hyriopsis cumingii plague II. A new arenavirus is the pathogen of Hyriopsis cumingii plague [J]. Acta Microbiol Sin 27(2):116–120

    Google Scholar 

  • Zhao LL, Hui K, Wang YQ, Wang Y, Ren Q, Li XC (2018) Three newly identified galectin homologues from triangle sail mussel (Hyriopsis cumingii) function as potential pattern-recognition receptors. Fish Shellfish Immunol 76:380–390

    Article  CAS  PubMed  Google Scholar 

  • Zhao LL, Jin M, Li XC, Ren Q, Lan JF (2016a) Four C1q domain-containing proteins involved in the innate immune response in Hyriopsis cumingii. Fish Shellfish Immunol 55:323–331

    Article  CAS  PubMed  Google Scholar 

  • Zhao LL, Wang YQ, Dai YJ, Zhao LJ, Qin Q, Lin L, Ren Q, Lan JF (2016b) A novel C-type lectin with four CRDs is involved in the regulation of antimicrobial peptide gene expression in Hyriopsis cumingii. Fish Shellfish Immunol 55:339–347

    Article  CAS  PubMed  Google Scholar 

  • Zhong L, Xu B, Yan D, Xiao T, Liu Q (2016) Pathogen isolation and pathologic observation on explosive epidemics of Hyriopsis cumingii lea. Turk J Fish Aquat Sci 16(4):935–945

    Article  Google Scholar 

Download references

Acknowledgement

The authors wish to thank the Director, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar for providing the necessary facilities for carrying out the work.

Conflict of interest: The authors confirm that there are no known conflicts of interest associated with this publication.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saurabh, S., Pradhan, S., Paul, A. (2021). Recent Understanding of Immunological Defence in Freshwater Pearl Mussel for Better Health Management. In: Gupta, S.K., Giri, S.S. (eds) Biotechnological Advances in Aquaculture Health Management . Springer, Singapore. https://doi.org/10.1007/978-981-16-5195-3_10

Download citation

Publish with us

Policies and ethics