Skip to main content

Pheromone Based Independent Reinforcement Learning for Multiagent Navigation

  • Conference paper
  • First Online:
Neural Computing for Advanced Applications (NCAA 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1449))

Included in the following conference series:

  • 1821 Accesses

Abstract

Multiagent systems (MAS) have been generally applied in numerous applications, including computer networks, robotics, and smart grids due to their flexibility, reliability for complex problem-solving. Communication is an important factor for the multiagent world to stay organized and productive. Previously, most existing studies try to pre-define the communication protocols or adopt additional decision modules for instructing the communication schedule, which induces significant communication cost overhead and cannot generalized to a large collection of agents directly. In this paper, we propose a lightweight communication framework—Pheromone Collaborative Deep Q-Network (PCDQN), which combines deep Q-network with the pheromone-driven stigmergy mechanism. In partially observable environments, this framework exploits the stigmergy as circuitous communication connections among independent reinforcement learning agents. Experiments dependent on the minefield navigation task have shown that PCDQN displays superiority in accomplishing higher learning productivity of multiple agents when contrasted with Deep Q-network (DQN).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dorigo, M., Bonabeau, E., Theraulaz, G.: Ant algorithms and stigmergy. Futur. Gener. Comput. Syst. 16(8), 851–871 (2000)

    Article  Google Scholar 

  2. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)

    Article  Google Scholar 

  3. Dorri, A., Kanhere, S.S., Jurdak, R.: Multi-agent systems: a survey. IEEE Access 6, 28573–28593 (2018)

    Article  Google Scholar 

  4. Heylighen, F.: Stigmergy as a universal coordination mechanism I: definition and components. Cogn. Syst. Res. 38, 4–13 (2016)

    Article  Google Scholar 

  5. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Google Scholar 

  6. Musil, J., Musil, A., Biffl, S.: Introduction and challenges of environment architectures for collective intelligence systems. In: Weyns, D., Michel, F. (eds.) E4MAS 2014. LNCS (LNAI), vol. 9068, pp. 76–94. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23850-0_6

    Chapter  Google Scholar 

  7. Naeem, B., Javed, S., Kasi, M.K., Sani, K.A.: Hybrid fuzzy logic engine for ping-pong effect reduction in cognitive radio network. Wireless Pers. Commun. 116(1), 177–205 (2021)

    Article  Google Scholar 

  8. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. arXiv preprint arXiv:1511.05952 (2015)

  9. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introductio, 2nd edn. The MIT Press (2018). http://incompleteideas.net/book/the-book-2nd.html

  10. Tan, A.H., Lu, N., Xiao, D.: Integrating temporal difference methods and self-organizing neural networks for reinforcement learning with delayed evaluative feedback. IEEE Trans. Neural Networks 19(2), 230–244 (2008)

    Article  Google Scholar 

  11. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double Q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)

    Google Scholar 

  12. Vinyals, O., et al.: Alphastar: mastering the real-time strategy game starcraft II. DeepMind Blog 2 (2019)

    Google Scholar 

  13. Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., Freitas, N.: Dueling network architectures for deep reinforcement learning. In: International Conference on Machine Learning, pp. 1995–2003. PMLR (2016)

    Google Scholar 

  14. Weiß, G.: Adaptation and learning in multi-agent systems: some remarks and a bibliography. In: Weiß, G., Sen, S. (eds.) IJCAI 1995. LNCS, vol. 1042, pp. 1–21. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60923-7_16

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundation of China under Grant 61906032, the NSFC-Liaoning Province United Foundation under Grant U1908214, the Fundamental Research Funds for the Central Universities under grant DUT21TD107, the LiaoNing Revitalization Talents Program, No. XLYC2008017, the National Key Research and Development Program of China under Grant 2018YFC0910500, the National Natural Science Foundation of China under Grant 61976034, and the Liaoning Key Research and Development Program under Grant 2019JH2/10100030.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaqing Hou or Qiang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, K., Hou, Y., Yu, H., Zhu, W., Feng, L., Zhang, Q. (2021). Pheromone Based Independent Reinforcement Learning for Multiagent Navigation. In: Zhang, H., Yang, Z., Zhang, Z., Wu, Z., Hao, T. (eds) Neural Computing for Advanced Applications. NCAA 2021. Communications in Computer and Information Science, vol 1449. Springer, Singapore. https://doi.org/10.1007/978-981-16-5188-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5188-5_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5187-8

  • Online ISBN: 978-981-16-5188-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics