Skip to main content

Fundamental Frequency Extraction of Noisy Speech Using Exponent Enhancement in Weighted Autocorrelation

  • Conference paper
  • First Online:
Sentimental Analysis and Deep Learning

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1408))

  • 1325 Accesses

Abstract

This research proposes a powerful method for extracting fundamental frequencies from speech in noisy environments that is more successful for speech processing applications. This work discusses a noise-resistant method for fundamental frequency extraction based on an exponent augmentation in the weighted autocorrelation function. To demonstrate the greater accuracy for fundamental frequency extraction, we focus on the exponent of the magnitude difference function. According to experimental results, proposed approach’s presentation in noisy situations provides an unequaled presentation compared to the conventional technique when an appropriate exponent is used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hess, W. (1983). Pitch determination of speech signals. Springer.

    Google Scholar 

  2. Rabiner, L. R., Cheng, M. J., Rosenberg, A. E., & McGonegal, C. A. (1976). A comparative performance study of several pitch detection algorithms. IEEE Transactions on Acoustics, Speech, and Signal Processing, 24(5), 339–417.

    Article  Google Scholar 

  3. Rabiner, L. R. (1977). On the use of autocorrelation analysis for pitch detection. IEEE Transactions on Acoustics, Speech, and Signal Processing, 25(1), 24–33.

    Article  Google Scholar 

  4. Ross, M. J., et al. (1974). Average magnitude difference function pitch extractor. IEEE Transactions on Acoustics, Speech, and Signal Processing, 22(5), 353–362.

    Article  Google Scholar 

  5. Xu, J. W., & Principle, J. C. (2008). A pitch detector based on a generalized correlation function. IEEE Transactions on Audio, Speech, and Language Processing, 16(8), 1420–1432.

    Article  Google Scholar 

  6. Shimamura, T., & Kobayashi, H. (2001). Weighted autocorrelation for pitch extraction of noisy speech. IEEE Transactions on Speech and Audio Processing, 9(7), 727–730.

    Article  Google Scholar 

  7. Noll, A. M. (1967). Cepstrum pitch determination. The Journal of the Acoustical Society of America, 41(2), 293–309.

    Article  Google Scholar 

  8. Kobayashi, H., & Shimamura, T. (1998). A modified cepstrum method for pitch extraction. In Proceedings of IEEE Asia-Pacifc International Conference on Circuits and Systems Microelectronics and Integrating Systems (APCCAS).

    Google Scholar 

  9. Gonzalez, S., & Brookes, M. (2014). PEFAC–A pitch estimation algorithm robust to high levels of noise. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(2), 518–530.

    Article  Google Scholar 

  10. Yang, N., Ba, H., Cai, W., Demirkol, I., & Heinzelman, W. (2014). BaNa: A noise resilient fundamental frequency detection algorithm for speech and music. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22(12), 1833–1848.

    Article  Google Scholar 

  11. Motegi, S., & Shimamura, T. (2012). Extended fundamental frequency extraction using exponentiated amplitude spectrum with band-limitation. International Journal of Computer and Electrical Engineering, 4(4), 507–510.

    Article  Google Scholar 

  12. Narita, M., & Shimamura, T. (2011) Exponentiated enhancement for fundamental frequency extraction of noisy speech. IEEE International Symposium on Signal Process. and Information Technology (pp. 342–346).

    Google Scholar 

  13. 20 Countries Language Database. (1988). NTT Advanced Technology Corporation, Japan.

    Google Scholar 

  14. Plante, F., Meyer, G., & Ainsworth, W. (1995). A fundamental frequency extraction reference database. In Proceedings of Eurospeech (pp. 837–840).

    Google Scholar 

  15. Brookes, M. Voicebox toolkit [Online]. Available, www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html.

  16. Wcng, wireless communication networking group, [Online]. Available www.ece.rochester.edu/projects/wcng/code.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Saifur Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rahman, M.S., Parvin, N. (2022). Fundamental Frequency Extraction of Noisy Speech Using Exponent Enhancement in Weighted Autocorrelation. In: Shakya, S., Balas, V.E., Kamolphiwong, S., Du, KL. (eds) Sentimental Analysis and Deep Learning. Advances in Intelligent Systems and Computing, vol 1408. Springer, Singapore. https://doi.org/10.1007/978-981-16-5157-1_44

Download citation

Publish with us

Policies and ethics