Skip to main content

Biosynthesis, Characterization and Antibacterial Performance of Trimanganese Tetraoxide Nanoparticles Using Azadirachta Indica Leaf Extract

  • Conference paper
  • First Online:
Selected Progresses in Modern Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 265))

Abstract

Nanoscale materials often present properties different from their bulk counterparts as their high surface to volume ratio results in the exponential increase of reactivity at the molecular level. Transition metal oxides are an intriguing class of materials due to their diverse structural choices and interesting physicochemical properties. In this respect, manganese oxides have a great potential because of their ability to adapt various oxidation states and particularly nanostructured hausmannite (Mn3O4) has efficacious application in the fields of pharmaceutical industries, catalysis, biosensors, high-density magnetic storage media, varistors etc. The present study reports the preparation of biosynthesized trimanganese tetraoxide nanoparticles by the reduction of potassium permanganate (KMnO4) using Azadirachta Indica leaf extract at room temperature. The biosynthesized nanoparticles were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, photoluminescence spectroscopy, ultraviolet radiation spectroscopy and vibrating sample magnetometry. Crystal phase identification of the nanoparticles was characterized by XRD analysis, and the formation of crystalline Mn3O4 has been confirmed. FTIR spectrum discloses the major functional groups and the chemical information present in the nanostructure. UV-Vis studies were performed to investigate the optical properties of the prepared samples. Morphological studies were carried out using SEM at various magnification levels. The magnetic properties of nanoparticles as a function of magnetic field were investigated using VSM. The Gel-Diffusion technique was used to test antibacterial activity against microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.E. Naveena, S. Prakash, Biological synthesis of gold nanoparticles using marine algae Gracilaria corticata and its application as a potent antimicrobial and antioxidant agent. Asian. J. Pharm. Clin. Res. 6, 179–182(2013)

    Google Scholar 

  2. B.M. Pradeep kumar, K. Sriram, R. Hari Krishna, T.H. Udayashankara, K.H. Shivaprasad, B.M. Nagabhushana, Synthesis, characterization of nano MnO2 and its ad sorption characteristics over an azo dye. RRJM 2(1) (2014)

    Google Scholar 

  3. P. Aggarwal, J.B. Hall, C.B. McLeland, M.A. Dobrovolskaia, S.E. McNeil, Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61(6), 428–437 (2009)

    Article  Google Scholar 

  4. V. Makarov, A.J. Love, O.V. Sinitsyna, S.S. Makarova, I.V. Yaminsky, M.E. Taliansky, N.O. Kalinina, “Green” nanotechnologies: synthesis of metal nanoparticles using plants Acta Naturae 6(1), 35–44 (2014)

    Google Scholar 

  5. K.S. Prasad, A. Batra, Green synthesis of MnO2 nanorods using Phyllanthus amaranth plant extract and their fluorescence studies. Green Process. Synth 6, 549–554 (2017)

    Google Scholar 

  6. Y. Lvov, B. Munge, O. Giraldo, I. Ichinnose, S.L. Suib, J.F. Rusling, Film of manganese oxide nanoparticles with polycations or myoglobin from alternate-layer adsorption. Langmuir. 16, 8850–8857, (2000)

    Google Scholar 

  7. X.L. Luo, J.J. Xu,W. Zhao, H.Y. Chen, A novel glucose ENFET based on the special reactivity of MnO2 nanoparticles. Biosens. Bioelectron. 19, 1295–1300 (2004)

    Google Scholar 

  8. X. Mao-wen, B. Shu-Juan, Nanostructured MnO2 for electrochemical capacitor, energy storage. Electrochim. Acta 55(18), 5117–5122 (2010)

    Google Scholar 

  9. L. Xiaodi, C. Changzhong, Z. Yiyang, J. Bin, A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries. Hindawi Publishing Corporation. J. Nanomat. 2013, 1–7 (2013)

    Google Scholar 

  10. G. Harichandran, P. Parameswari, D.S. Amalraj, P. Shanmugam, Preparation of MnO2 nanoparticles and application in the synthesis of 2,2′-aryl methylene bis(3-hydroxy-5,5-dimethyl-2-cyclohexene-1-one). (IJIRSE) Int. J. Innov. Res. Sci. Eng. 443–447 (2014)

    Google Scholar 

  11. L. Tao, S. Tingting, L. Xiaobo, Z. Shuilin, Y. Lihong, P. Yuepu, Effects of nano-MnO2 on dopaminergic neurons and the spatial learning capability of rats. Int. J. Environ. Res. Public Health 11(8), 7918–7930 (2014)

    Google Scholar 

  12. M.N. Mohammad, R. Fahimeh, A. Eva-Mari, L. Choon-Hwan, I.A. Suleyman, Nano-sized manganese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a review. J. R. Soc. Interface 9, 2383–2395 (2012)

    Article  Google Scholar 

  13. D. Van-Phuc, L. Ngoc-Chung, N. Ngoc-Tuan, Removal of copper (Ii) from aqueous solution by adsorption onto MnO2 nanostructure: equilibrium and kinetic studies, in The 4th Academic Conference on Natural Science for Young Scientists, Master & PhD. Students From Asean Countries, Publishing House for Science and Technology, 57–64 (2015)

    Google Scholar 

  14. J. Hou, Y. Li, L. Liu, L. Ren, X. Zhao, Effect of giant oxygen vacancy defects on the catalytic oxidation of OMS-2 nanorods. J. Mater. Chem. A 1, 6736–6741 (2013)

    Article  Google Scholar 

  15. M. Jayandran, M. Muhamed Haneefa, V. Balasubramanian, Synthesised manganese oxide nanoparticles by using lemon and turmeric curcumin extract as a reducing and capping agent. Synthesised particles are analyzed for their anti-bacterial and antifungal activities. J. Appl. Pharm. Sci. 5 (12), 105–110 (2015)

    Google Scholar 

  16. K. Vineet, S. Kulvinder, P. Shaily, K.M. Suyinder, Green synthesis of manganese oxide nanoparticles for the electrochemical sensing of p-nitrophenol. Int. Nano Lett. 7, 123–131 (2017)

    Google Scholar 

  17. S. Moon, B. Salunke, B. Alkotaini, E. Sathiyamoorthi, B. Kim, Biological synthesis of manganese dioxide nanoparticles by Kalopanax pictus plant extract. IET Nanobiotechnol. 9(4), 220–225 (2015)

    Article  Google Scholar 

  18. M. Wright, S. Farooqui, A. White, A. Greene, Production of manganese oxide nanoparticles by Shewanella species. Appl. Environ. Microbiol. 82(17), 5402–5409 (2016)

    Article  ADS  Google Scholar 

  19. P. Banerjee, M. Satapathy, A. Mukhopahayay, P. Das, Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour. Bioprocess. 1(1), 1–10 (2014)

    Google Scholar 

  20. H. Schmidbaur, Book review: chemistry of the elements. By N.N. Greenwood and A. Earnshaw. Angew. Chem. Int. Ed. Engl. 25(2), 194–195 (1986)

    Google Scholar 

  21. L. Christensen, Biosynthesis of silver nanoparticles using Murraya koenigii (curry leaf): an investigation on the effect of broth concentration in reduction mechanism and particle size. Adv. Mater. Lett. 2(6), 429–434 (2011)

    Article  Google Scholar 

  22.  H.P. Klug, L.E. Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials, 2. Auflage. John Wiley & Sons, New York-Sydney-Toronto 1974, 966 Seiten, Preis: £ 18.55. Berichte der Bun sengesellschaft für physikalische Chemie 79(6), 553–553 (1975)

    Google Scholar 

  23. S. Singh, R. Gopal, Synthesis of colloidal zinc oxide nanoparticles by pulsed laser ablation in aqueous media. Phys. E. 40(4), 724–730 (2008)

    Article  Google Scholar 

  24. G. Chen, M. Hong, B. Lan, Z. Wang, Y. Lu, T. Chong, A convenient way to prepare magnetic colloids by direct Nd:YAG laser ablation. Appl. Surf. Sci. 228(1–4), 169–175 (2004)

    Article  ADS  Google Scholar 

  25. H. Rahaman, S. Ghosh, Soft-templated synthesis of Mn3O4 microdandelions for the degradation of alizarin red under visible light irradiation. RSC Adv. 6(6), 4531–4539 (2016)

    Article  ADS  Google Scholar 

  26. D. Dubal, R. Holze, All-solid-state flexible thin film super capacitor based on Mn3O4 stacked nanosheets with gel electrolyte. Energy 51, 407–412 (2013)

    Article  Google Scholar 

  27. U. Suresh, K. Murugan, G. Benelli, M. Nicoletti, D. Barnard, C. Panneerselvam, P. Kumar, J. Subramaniam, D. Dinesh, B. Chandramohan, Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nano particles and their mosquitocidal properties against the dengue vector Aedes ae gypti (Diptera: Culicidae). Parasitol. Res. 114(4), 1551–1562 (2015)

    Article  Google Scholar 

  28. N. Deraz, A. Abdeltawab, S. Al-Deyab, Preparation and characterization of bulk and alumina supported hausmannite nanoparticles. Asian J. Chem. 26(7), 2120–2124 (2014)

    Article  Google Scholar 

  29. T. Ozkaya, A. Baykal, H. Kavas, Y. Köseoğlu, M. Toprak, A novel synthetic route to Mn3O4 nanoparticles and their magnetic evaluation. Phys. B 403(19–20), 3760–3764 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rani, S.J.J., Sinthiya, A.S.I.J., Thangam, G.J.R. (2021). Biosynthesis, Characterization and Antibacterial Performance of Trimanganese Tetraoxide Nanoparticles Using Azadirachta Indica Leaf Extract. In: Sengupta, S., Dey, S., Das, S., Saikia, D.J., Panda, S., Podila, R. (eds) Selected Progresses in Modern Physics. Springer Proceedings in Physics, vol 265. Springer, Singapore. https://doi.org/10.1007/978-981-16-5141-0_3

Download citation

Publish with us

Policies and ethics