Skip to main content

Exploring Plant Responses to Salinity and Implications of Halophytes as a Model for Salinity Improvement

  • Chapter
  • First Online:
Managing Plant Production Under Changing Environment

Abstract

Inappropriate agricultural practices and environmental impacts are worsening soil salinity. This affects crop yield and, consequently, the dynamics of the international market and food security. According to the stage of development of the plant, the duration of exposure, and the intensity of stress, different responses are triggered to maintain vital metabolic reactions and the integrity of cellular components. The most consumed crops in the world, in general, are glycophytes, and the efforts to find salt-tolerant cultivars have not yet resulted in wide practical application in the field. Since halophytic plants can complete their life cycle under highly saline conditions, they can provide clues about pathways to be explored to improve glycophytes’ response to salinity. In this context, the search for differences between glycophytes and halophytes has contributed to the identification of promising traits of the latter that can enable the achievement of the mentioned aim. Among them, the existence of transcripts unique to halophytes and unannotated, therefore, with unknown functions. Furthermore, although responses to salt are generally common between these two groups of plants, halophytes succeed, for example, regarding the balancing of the Na+/K+ ratio. It can occur through the ability to compartmentalize higher levels of Na+ in vacuoles and to maintain or distribute K+ more efficiently. Moreover, other highlights that can be explored include the ions usage for osmotic adjustment as a metabolically cheaper alternative and more powerful antioxidant system and stress signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah MM-S, El Sebai TN, Ramadan AAE-M, El-Bassiouny HMS (2020) Physiological and biochemical role of proline, trehalose, and compost on enhancing salinity tolerance of quinoa plant. Bull Natl Res Cent 44:96

    Google Scholar 

  • Ali A, Maggio A, Bressan R, Yun D-J (2019) Role and functional differences of HKT1-type transporters in plants under salt stress. Int J Mol Sci 20:1059

    CAS  PubMed Central  Google Scholar 

  • Ali A, Raddatz N, Aman R, Kim S, Park HC, Jan M, Baek D, Khan IU, Oh D-H, Lee SY, Bressan RA, Lee KW, Maggio A, Pardo JM, Bohnert HJ, Yun D-J (2016) A single amino-acid substitution in the sodium transporter HKT1 associated with plant salt tolerance. Plant Physiol 171:2112–2126

    PubMed  PubMed Central  Google Scholar 

  • Almeida DM, Oliveira MM, Saibo NJM (2017) Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol 40:326–345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ariizumi T, Hauvermale AL, Nelson SK, Hanada A, Yamaguchi S, Steber CM (2013) Lifting DELLA repression of Arabidopsis seed germination by nonproteolytic gibberellin signaling. Plant Physiol 162:2125–2139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aslam R, Bostan N, Nabgha-e-Amen MM, Safdar W (2011) A critical review on halophytes: salt tolerant plants. J Med Plant Res 5:7108–7118

    CAS  Google Scholar 

  • Assaha DVM, Ueda A, Saneoka H, Al-Yahyai R, Yaish MW (2017) The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol 8:5

    Google Scholar 

  • Assmann SM (1995) Cyclic AMP as a second messenger in higher plants (status and future prospects). Plant Physiol 108:885–889

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barros NLF, Marques DN, Tadaiesky LBA, de Souza CRB (2021) Halophytes and other molecular strategies for the generation of salt-tolerant crops. Plant Physiol Biochem 162:581–591

    CAS  PubMed  Google Scholar 

  • Bartels D, Dinakar C (2013) Balancing salinity stress responses in halophytes and non-halophytes: a comparison between Thellungiella and Arabidopsis thaliana. Funct Plant Biol 40:819

    CAS  PubMed  Google Scholar 

  • Batelli G, Verslues PE, Agius F, Qiu Q, Fujii H, Pan S, Schumaker KS, Grillo S, Zhu K (2007) SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-TPase and upregulating its transport activity. Mol Cell Biol 27:7781–7790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bazihizina N, Colmer TD, Cuin TA, Mancuso S, Shabala S (2019) Friend or foe? Chloride patterning in halophytes. Trends Plant Sci 24:142–151

    CAS  PubMed  Google Scholar 

  • Belmecheri-Cherifi H, Albacete A, Martínez-Andújar C, Pérez-Alfocea F, Abrous-Belbachir O (2019) The growth impairment of salinized fenugreek (Trigonella foenum-graecum L.) plants is associated to changes in the hormonal balance. J Plant Physiol 232:311–319

    CAS  PubMed  Google Scholar 

  • Ben Hamed K, Dabbous A, El Shaer H, Abdely C (2018) Salinity responses and adaptive mechanisms in halophytes and their exploitation for producing salinity tolerant crops. In: Kumar V, Wani S, Suprasanna P, Tran LS (eds) Salinity responses and tolerance in plants. Springer, Cham, pp 1–19

    Google Scholar 

  • Bonales-Alatorre E, Shabala S, Chen Z-H, Pottosin I (2013) Reduced tonoplast fast-activating and slow-activating channel activity is essential for conferring salinity tolerance in a facultative halophyte, quinoa. Plant Physiol 162:940–952

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257

    CAS  PubMed  Google Scholar 

  • Bueno M, Lendínez ML, Calero J, del Pilar CM (2020) Salinity responses of three halophytes from inland saltmarshes of Jaén (southern Spain). Flora 266:151589

    Google Scholar 

  • Byrt CS, Munns R, Burton RA, Gilliham M, Wege S (2018) Root cell wall solutions for crop plants in saline soils. Plant Sci 269:47–55

    CAS  PubMed  Google Scholar 

  • Cai Z-Q, Gao Q (2020) Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars. BMC Plant Biol 20:70

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C-W, Yang Y-W, Lur H-S, Tsai Y-G, Chang M-C (2006) A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant Cell Physiol 47:1–13

    PubMed  Google Scholar 

  • Chen Z, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D, Zepeda-Jazo I, Zhou M, Palmgren MG, Newman IA, Shabala S (2007) Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiol 145:1714–1725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang C-P, Yim WC, Sun Y-H, Ohnishi M, Mimura T, Cushman JC, Yen HE (2016) Identification of ice plant (Mesembryanthemum crystallinum L.) microRNAs using RNA-seq and their putative roles in high salinity responses in seedlings. Front Plant Sci 2016:7

    Google Scholar 

  • Cui W, Lee J-Y (2016) Arabidopsis callose synthases CalS1/8 regulate plasmodesmal permeability during stress. Nat Plants 2:16034

    CAS  PubMed  Google Scholar 

  • Davenport R (2002) Glutamate receptors in plants. Ann Bot 90:549–557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Decreux A, Messiaen J (2005) Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. Plant Cell Physiol 46:268–278

    CAS  PubMed  Google Scholar 

  • Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175:387–404

    CAS  PubMed  Google Scholar 

  • Demidchik V, Tester M (2002) Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol 128:379–387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Docimo T, De Stefano R, Cappetta E, Piccinelli AL, Celano R, De Palma M, Tucci M (2020) Physiological, biochemical, and metabolic responses to short and prolonged saline stress in two cultivated cardoon genotypes. Plant Theory 9:554

    CAS  Google Scholar 

  • Fang Q, Jiang T, Xu L, Liu H, Mao H, Wang X, Jiao B, Duan Y, Wang Q, Dong Q, Yang L, Tian G, Zhang C, Zhou Y, Liu X, Wang H, Fan D, Wang B, Luo K (2017) A salt-stress-regulator from the poplar R2R3 MYB family integrates the regulation of lateral root emergence and ABA signaling to mediate salt stress tolerance in Arabidopsis. Plant Physiol Biochem 114:100–110

    CAS  PubMed  Google Scholar 

  • Feki K, Quintero FJ, Khoudi H, Leidi EO, Masmoudi K, Pardo JM, Brini F (2014) A constitutively active form of a durum wheat Na+/H+ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis. Plant Cell Rep 33:277–288

    CAS  PubMed  Google Scholar 

  • Feng J, Wang J, Fan P, Jia W, Nie L, Jiang P, Chen X, Lv S, Wan L, Chang S, Li S, Li Y (2015) High-throughput deep sequencing reveals that microRNAs play important roles in salt tolerance of euhalophyte Salicornia europaea. BMC Plant Biol 15:63

    PubMed  PubMed Central  Google Scholar 

  • Finkelstein R (2013) Abscisic acid synthesis and response. Arab B 11:e0166

    Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    CAS  PubMed  Google Scholar 

  • Flowers TJ, Colmer TD (2015) Plant salt tolerance: adaptations in halophytes. Ann Bot 115:327–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Q Rev Biol 61:313–337

    Google Scholar 

  • Flowers TJ, Munns R, Colmer TD (2015) Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot 115:419–431

    CAS  PubMed  Google Scholar 

  • Fu X, Richards DE, Ait-ali T, Hynes LW, Ougham H, Peng J, Harberd NP (2002) Gibberellin-mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor. Plant Cell 14:3191–3200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao S, Yang L, Zeng HQ, Zhou ZS, Yang ZM, Li H, Sun D, Xie F, Zhang B (2016) A cotton miRNA is involved in regulation of plant response to salt stress. Sci Rep 6:19736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garza-Torres R, Troyo-Diéguez E, Nieto-Garibay A, Lucero-Vega G, Magallón-Barajas FJ, García-Galindo E, Fimbres-Acedo Y, Murillo-Amador B (2020) Environmental and management considerations for adopting the halophyte Salicornia bigelovii Torr. As a sustainable seawater-irrigated crop. Sustainability 12:707

    Google Scholar 

  • Geilfus C-M (2017) The pH of the apoplast: dynamic factor with functional impact under stress. Mol Plant 10:1371–1386

    CAS  PubMed  Google Scholar 

  • Gharbi E, Martínez J-P, Benahmed H, Hichri I, Dobrev PI, Motyka V, Quinet M, Lutts S (2017) Phytohormone profiling in relation to osmotic adjustment in NaCl-treated plants of the halophyte tomato wild relative species Solanum chilense comparatively to the cultivated glycophyte Solanum lycopersicum. Plant Sci 258:77–89

    CAS  PubMed  Google Scholar 

  • Ghosh S, Bagchi S, Lahiri Majumder A (2001) Chloroplast fructose-1,6-bisphosphatase from Oryza differs in salt tolerance property from the Porteresia enzyme and is protected by osmolytes. Plant Sci 160:1171–1181

    CAS  PubMed  Google Scholar 

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. CRC Crit Rev Plant Sci 18:227–255

    Google Scholar 

  • Gorham J (1995) Mechanism of salt tolerance of halophytes. In: Choukr-Allah R, Malcolm CV, Hamdy A (eds) Halophytes and biosaline agriculture. CRC Press, Boca Raton, pp 31–53

    Google Scholar 

  • Gou J-Y, Felippes FF, Liu C-J, Weigel D, Wang J-W (2011) Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23:1512–1522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guan R, Qu Y, Guo Y, Yu L, Liu Y, Jiang J, Chen J, Ren Y, Liu G, Tian L, Jin L, Liu Z, Hong H, Chang R, Gilliham M, Qiu L (2014) Salinity tolerance in soybean is modulated by natural variation in GmSALT3. Plant J 80:937–950

    CAS  PubMed  Google Scholar 

  • Guo R, Zhao L, Zhang K, Gao D, Yang C (2020) Genome of extreme halophyte Puccinellia tenuiflora. BMC Genomics 21:311

    PubMed  PubMed Central  Google Scholar 

  • Hajiboland R, Bahrami-Rad S, Zeinalzade N, Atazadeh E, Akhani H, Poschenrieder C (2020) Differential functional traits underlying the contrasting salt tolerance in Lepidium species. Plant and Soil 448:315–334

    CAS  Google Scholar 

  • Haque MI, Rathore MS, Gupta H, Jha B (2017) Inorganic solutes contribute more than organic solutes to the osmotic adjustment in Salicornia brachiata (Roxb.) under natural saline conditions. Aquat Bot 142:78–86

    CAS  Google Scholar 

  • Hasanuzzaman M, Bhuyan M, Nahar K, Hossain M, Mahmud J, Hossen M, Masud A, Moumita FM (2018) Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. Agronomy 8:31

    Google Scholar 

  • He K, Zhao X, Chi X, Wang Y, Jia C, Zhang H, Zhou G, Hu R (2019) A novel Miscanthus NAC transcription factor MlNAC10 enhances drought and salinity tolerance in transgenic Arabidopsis. J Plant Physiol 233:84–93

    CAS  PubMed  Google Scholar 

  • Horie T, Hauser F, Schroeder JI (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci 14:660–668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J 27:129–138

    CAS  PubMed  Google Scholar 

  • Hou X, Lee LYC, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 19:884–894

    CAS  PubMed  Google Scholar 

  • Isayenkov S, Isner JC, Maathuis FJM (2010) Vacuolar ion channels: roles in plant trition and signalling. FEBS Lett 584:1982–1988

    CAS  PubMed  Google Scholar 

  • Jiang C, Belfield EJ, Cao Y, Smith JAC, Harberd NP (2013) An Arabidopsis soil-salinity–tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. Plant Cell 25:3535–3552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joint Research Centre, European Commission (2018) World atlas of desertification. https://wad.jrc.ec.europa.eu/soilsalinization Accessed 20 Oct 2020

  • Katschnig D, Bliek T, Rozema J, Schat H (2015) Constitutive high-level SOS1 expression and absence of HKT1;1 expression in the salt-accumulating halophyte Salicornia dolichostachya. Plant Sci 234:144–154

    CAS  PubMed  Google Scholar 

  • Katschnig D, Broekman R, Rozema J (2013) Salt tolerance in the halophyte Salicornia dolichostachya Moss: growth, morphology and physiology. Environ Exp Bot 92:32–42

    CAS  Google Scholar 

  • Kim W-Y, Ali Z, Park HJ, Park SJ, Cha J-Y, Perez-Hormaeche J, Quintero FJ, Shin G, Kim MR, Qiang Z, Ning L, Park HC, Lee SY, Bressan RA, Pardo JM, Bohnert HJ, Yun D-J (2013) Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat Commun 4:1352

    PubMed  Google Scholar 

  • Köster P, Wallrad L, Edel KH, Faisal M, Alatar AA, Kudla J (2019) The battle of two ions: Ca2+ signalling against Na+ stress. Plant Biol 21:39–48

    PubMed  Google Scholar 

  • Koyro H-W (1997) Ultrastructural and physiological changes in root cells of sorghum plants (Sorghum bicolor x S. sudanensis cv. Sweet Sioux) induced by NaCl. J Exp Bot 48:693–706

    CAS  Google Scholar 

  • Kramer DM, Cruz JA, Kanazawa A (2003) Balancing the central roles of the thylakoid proton gradient. Trends Plant Sci 8:27–32

    CAS  PubMed  Google Scholar 

  • Kumar A, Mann A, Lata C, Kumar N, Sharma PC (2019) Salinity-induced physiological and molecular responses of halophytes. In: Dagar J, Yadav R, Sharma P (eds) Research developments in saline agriculture. Springer, Singapore, pp 331–356

    Google Scholar 

  • Lian C, Yao K, Duan H, Li Q, Liu C, Yin W, Xia X (2018) Exploration of ABA responsive miRNAs reveals a new hormone signaling crosstalk pathway regulating root growth of Populus euphratica. Int J Mol Sci 19:1481

    PubMed Central  Google Scholar 

  • Liu H-H, Tian X, Li Y-J, Wu C-A, Zheng C-C (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Tai H, Li S, Gao W, Zhao M, Xie C, Li W-X (2014) bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytol 201:1192–1204

    CAS  PubMed  Google Scholar 

  • Liu X, Cai S, Wang G, Wang F, Dong F, Mak M, Holford P, Ji J, Salih A, Zhou M, Shabala S, Chen Z-H (2017) Halophytic NHXs confer salt tolerance by altering cytosolic and vacuolar K+ and Na+ in Arabidopsis root cell. Plant Growth Regul 82:333–351

    CAS  Google Scholar 

  • Luan S (2009) The CBL–CIPK network in plant calcium signaling. Trends Plant Sci 14:37–42

    CAS  PubMed  Google Scholar 

  • Maathuis FJM (2014) Sodium in plants: perception, signalling, and regulation of sodium fluxes. J Exp Bot 65:849–858

    CAS  PubMed  Google Scholar 

  • Maathuis FJM, Ahmad I, Patishtan J (2014) Regulation of Na+ fluxes in plants. Front Plant Sci 5:467

    PubMed  PubMed Central  Google Scholar 

  • Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17:9–15

    CAS  PubMed  Google Scholar 

  • Marques DN, dos Reis SP, de Souza CRB (2017) Plant NAC transcription factors responsive to abiotic stresses. Plant Gene 11:170–179. https://doi.org/10.1016/j.plgene.2017.06.003

    Article  CAS  Google Scholar 

  • Mondal TK, Ganie SA, Debnath AB (2015) Identification of novel and conserved miRNAs from extreme halophyte, Oryza coarctata, a wild relative of rice. PLoS One 10:e0140675

    PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Nikalje GC, Srivastava AK, Pandey GK, Suprasanna P (2018) Halophytes in biosaline agriculture: mechanism, utilization, and value addition. L Degrad Dev 29:1081–1095

    Google Scholar 

  • Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan T, Liu M, Kreslavski VD, Zharmukhamedov SK, Nie C, Yu M, Kuznetsov V, Allakhverdiev SI, Shabala S (2020) Non-stomatal limitation of photosynthesis by soil salinity. Crit Rev Environ Sci Technol 5:1–35

    CAS  Google Scholar 

  • Peng Z, He S, Gong W, Sun J, Pan Z, Xu F, Lu Y, Du X (2014) Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes. BMC Genomics 15:760

    PubMed  PubMed Central  Google Scholar 

  • Percey WJ, McMinn A, Bose J, Breadmore MC, Guijt RM, Shabala S (2016a) Salinity effects on chloroplast PSII performance in glycophytes and halophytes. Funct Plant Biol 43:1003

    CAS  PubMed  Google Scholar 

  • Percey WJ, Shabala L, Wu Q, Su N, Breadmore MC, Guijt RM, Bose J, Shabala S (2016b) Potassium retention in leaf mesophyll as an element of salinity tissue tolerance in halophytes. Plant Physiol Biochem 109:346–354

    CAS  PubMed  Google Scholar 

  • Proseus TE, Boyer JS (2012) Pectate chemistry links cell expansion to wall deposition in Chara corallina. Plant Signal Behav 7:1490–1492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Q-S, Guo Y, Quintero FJ, Pardo JM, Schumaker KS, Zhu J-K (2004) Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. J Biol Chem 279:207–215

    CAS  PubMed  Google Scholar 

  • Quintero FJ, Martinez-Atienza J, Villalta I, Jiang X, Kim W-Y, Ali Z, Fujii H, Mendoza I, Yun D-J, Zhu J-K, Pardo JM (2011) Activation of the plasma membrane Na/H antiporter salt-overly-sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proc Natl Acad Sci 108:2611–2616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quintero FJ, Ohta M, Shi H, Zhu J-K, Pardo JM (2002) Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci 99:9061–9066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Redondo-Gómez S, Mateos-Naranjo E, Figueroa ME, Davy AJ (2010) Salt stimulation of growth and photosynthesis in an extreme halophyte, Arthrocnemum macrostachyum. Plant Biol 12:79–87

    PubMed  Google Scholar 

  • Roberts SK, Tester M (1997) Permeation of Ca2+ and monovalent cations through an outwardly rectifying channel in maize root stelar cells. J Exp Bot 48:839–846

    CAS  Google Scholar 

  • Rozema J, Flowers T (2008) Crops for a salinized world. Science 322:1478–1480

    CAS  PubMed  Google Scholar 

  • Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112:1209–1221

    PubMed  PubMed Central  Google Scholar 

  • Shabala S, Cuin TA, Pottosin I (2007) Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking non-selective cation channels. FEBS Lett 581:1993–1999

    CAS  PubMed  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu J-K (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci 97:6896–6901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savouré A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Wang M-J, Ding M-Q, Deng S-R, Liu M-Q, Lu C-F, Zhou X-Y, Shen X, Zheng X-J, Zhang Z-K, Song J, Hu Z-M, Xu Y, Chen S-L (2010) H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells. Plant Cell Environ 33:943–958

    CAS  PubMed  Google Scholar 

  • Sun Y, Lindberg S, Shabala L, Morgan S, Shabala S, Jacobsen S-E (2017) A comparative analysis of cytosolic Na+ changes under salinity between halophyte quinoa (Chenopodium quinoa) and glycophyte pea (Pisum sativum). Environ Exp Bot 141:154–160

    CAS  Google Scholar 

  • Tao J-J, Chen H-W, Ma B, Zhang W-K, Chen S-Y, Zhang J-S (2015) The role of ethylene in plants under salinity stress. Front Plant Sci 6:5

    Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trotta A, Redondo-Gómez S, Pagliano C, Clemente MEF, Rascio N, La Rocca N, Antonacci A, Andreucci F, Barbato R (2012) Chloroplast ultrastructure and thylakoid polypeptide composition are affected by different salt concentrations in the halophytic plant Arthrocnemum macrostachyum. J Plant Physiol 169:111–116

    CAS  PubMed  Google Scholar 

  • Vatanparast G, Mirdehghan H, Karimi H, Vazifeshenas M (2012) Foliar application of salicylic acid, methyl jasmonate and potassium sulfate on photosynthetic characteristics and fruit quality of pomegranate. Iran Agric Res 31:23–34

    Google Scholar 

  • Wang X, Bai J, Wang W, Zhang G, Yin S, Wang D (2020) A comparative metabolomics analysis of the halophyte Suaeda salsa and Salicornia europaea. Environ Geochem Health

    Google Scholar 

  • Wu Y, Guo J, Cai Y, Gong X, Xiong X, Qi W, Pang Q, Wang X, Wang Y (2016) Genome-wide identification and characterization of Eutrema salsugineum microRNAs for salt tolerance. Physiol Plant 157:453–468

    CAS  PubMed  Google Scholar 

  • Yadav N, Shukla P, Jha A, Agarwal PK, Jha B (2012) The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biol 12:188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yalcinkaya T, Uzilday B, Ozgur R, Turkan I (2019) The roles of reactive carbonyl species in induction of antioxidant defence and ROS signalling in extreme halophytic model Eutrema parvulum and glycophytic model Arabidopsis thaliana. Environ Exp Bot 160:81–91

    CAS  Google Scholar 

  • Yang Y, Guo Y (2018) Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217:523–539

    CAS  PubMed  Google Scholar 

  • Yepes L, Chelbi N, Vivo J-M, Franco M, Agudelo A, Carvajal M, del Martínez-Ballesta MC (2018) Analysis of physiological traits in the response of Chenopodiaceae, Amaranthaceae, and Brassicaceae plants to salinity stress. Plant Physiol Biochem 132:145–155

    CAS  PubMed  Google Scholar 

  • Yuan F, Guo J, Shabala S, Wang B (2019a) Reproductive physiology of halophytes: current standing. Front Plant Sci 9:1954

    PubMed  PubMed Central  Google Scholar 

  • Yuan F, Wang B (2020) Adaptation of recretohalophytes to salinity. In: Grigore MN (ed) Handbook of halophytes. Springer, Cham, pp 1–21

    Google Scholar 

  • Yuan F, Xu Y, Leng B, Wang B (2019b) Beneficial effects of salt on halophyte growth: morphology, cells, and genes. Open Life Sci 14:191–200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zarei M, Shabala S, Zeng F, Chen X, Zhang S, Azizi M, Rahemi M, Davarpanah S, Yu M, Shabala L (2020) Comparing kinetics of xylem ion loading and its regulation in halophytes and glycophytes. Plant Cell Physiol 61:403–415

    CAS  PubMed  Google Scholar 

  • Zeng D-E, Hou P, Xiao F, Liu Y (2015) Overexpression of Arabidopsis XERICO gene confers enhanced drought and salt stress tolerance in rice (Oryza Sativa L.). J Plant Biochem Biotechnol 24:56–64

    Google Scholar 

  • Zhang H, Feng H, Zhang J, Ge R, Zhang L, Wang Y, Li L, Wei J, Li R (2020) Emerging crosstalk between two signaling pathways coordinates K+ and Na+ homeostasis in the halophyte Hordeum brevisubulatum. J Exp Bot 71:4345–4358

    CAS  PubMed  Google Scholar 

  • Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song C-P (2001) Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol 126:1438–1448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Lin H, Chen S, Becker K, Yang Y, Zhao J, Kudla J, Schumaker KS, Guo Y (2014) Inhibition of the Arabidopsis salt overly sensitive pathway by 14-3-3 proteins. Plant Cell 26:1166–1182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu M, Meng X, Cai J, Li G, Dong T, Li Z (2018) Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato. BMC Plant Biol 18:83

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Nicolle Louise Ferreira Barros thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; grant number 140586/2021-0) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES - Finance Code 001). The corresponding author (Deyvid Novaes Marques) thanks Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; grant numbers 2017/05544-0, 2018/20706-9, and 2020/12666-7) and CNPq (grant number 153102/2016-0).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barros, N.L.F., Marques, D.N., de Souza, C.R.B. (2022). Exploring Plant Responses to Salinity and Implications of Halophytes as a Model for Salinity Improvement. In: Hasanuzzaman, M., Ahammed, G.J., Nahar, K. (eds) Managing Plant Production Under Changing Environment. Springer, Singapore. https://doi.org/10.1007/978-981-16-5059-8_10

Download citation

Publish with us

Policies and ethics