Skip to main content

Comparative Study of Latch Type and Differential Type Sense Amplifier Circuits Using Power Reduction Techniques

  • Conference paper
  • First Online:
Microelectronic Devices, Circuits and Systems (ICMDCS 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1392))

Abstract

A quantitative and yield analysis of different types of sense amplifiers has been done. Furthermore, power reduction techniques such as sleep transistor technique, footer stack technique, sleep stack technique, and sleepy keeper technique also have been done over sense amplifiers. Observations specifically concentrate on the dissipation of power of various combinations of sense amplifiers. The findings of the simulation reveal that the suggested implementation of the sleep transistor technique system in the current mode differential sense amplifier often leads to a drastic decrease, in power dissipation considering 1.2 V power supply voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tao, Y.-p., Hu, W.-p.: Design of sense amplifier in the high-speed SRAM. In: International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, pp. 384–387 (2015)

    Google Scholar 

  2. Garg, M.R., Tonk, A.: A study of different types of voltage & current sense amplifier used in SRAM. Int. J. Adv. Res. Comput. Commun. Eng. 4, 30–35 (2015)

    Google Scholar 

  3. Natarajan, A., Shanker, V., Maheshwari, A.: Sensing design issue in deep submicron CMOS SRAM. In: IEEE Computer Society Annual Symposium on VLSI, pp. 42–45 (2005)

    Google Scholar 

  4. Pandey, K., Yadav, V.: Design and analysis of low power latch sense amplifier. IOSR J. Electron. Commun. Eng. 9, 69–73 (2014)

    Article  Google Scholar 

  5. Priya, G., Baskaran, K., Krishnaveni, D.: Leakage power reduction techniques in deep submicron technologies for VLSI applications. In: International Conference on Communication Technology and System Design. ELSEVIER (2011)

    Google Scholar 

  6. Abdollahi, A., Fallah, F., Pedram, M.: A robust power gating structure and power mode transition strategy for MTCMOS design. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 15, 80–89 (2007). ISSN 1063-8210

    Google Scholar 

  7. Sathanur, A., Pullini, A., Benini, L., Macii, A., Macii, E., Poncino, M.: A scalable algorithmic framework for row-based power-gating. In: Design Automation and Test in Europe 2008. DATE 2008, pp. 379–384 (2008). ISSN 1530-1591

    Google Scholar 

  8. Sridhara, K., Biradar, G.S., Yanamshetti, R.: Subthreshold leakage power reduction in VLSI circuits: a survey. In: 2016 International Conference on Communication and Signal Processing (ICCSP), pp. 1120–1124 (2016)

    Google Scholar 

  9. Dounavi, H., Sfikas, Y., Tsiatouhas, Y.: Periodic aging monitoring in SRAM sense amplifiers. In: 2018 IEEE 24th International Symposium on On-Line Testing And Robust System Design (IOLTS), Platja d’Aro, pp. 12–16 (2018)

    Google Scholar 

  10. Na, T., Woo, S., Kim, J., Jeong, H., Jung, S.: Comparative study of various latch-type sense amplifiers. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22(2), 425–429 (2014)

    Article  Google Scholar 

  11. Sinha, M., Hsu, S., Alvandpour, A., Burleson, W., Krishnamurthy, R., Borhr, S.: High-performance and low-voltage sense-amplifier techniques for sub-90nm SRAM. In: SOC Conference, Proceedings. IEEE International [Systems-on-Chip] (2003)

    Google Scholar 

  12. Mohammad, B., Dadabhoy, P., Lin, K., Bassett, P.: Comparative study of current mode and voltage mode sense amplifier used for 28nm SRAM. In: 24th International Conference on Microelectronic, 07 March 2013

    Google Scholar 

  13. Wang, Y., Zhao, F., Liu, M., Han, Z.: A new full current-mode sense amplifier with compensation circuit. In: 2011 9th IEEE International Conference on ASIC, Xiamen, pp. 645–648 (2011)

    Google Scholar 

  14. Dutt, R., Abhijeet: High-speed current mode sense amplifier for SRAM applications. IOSR J. Eng. 2, 1124–1127 (2012)

    Google Scholar 

  15. Wei, Z., Peng, X., Wang, J., Yin, H., Gong, N.: Novel CMOS SRAM voltage latched sense amplifiers design based on 65nm technology, pp. 3281–3282 (2014)

    Google Scholar 

  16. Arora, D., Gundu, A.K., Hashmi, M.S.: A high-speed low voltage latch type sense amplifier for non-volatile memory. In: 2016 20th International Symposium on VLSI Design and Test (VDAT), Guwahati, pp. 1–5 (2016)

    Google Scholar 

  17. Agrawal, R., Tomar, V.K.: Analysis of cache (SRAM) memory for core I ™ 7 processor. In: 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 402 (2018)

    Google Scholar 

  18. Schinkel, D., Mensink, E., Klumperink, E., van Tuijl, E., Nauta, B.: A double-tail latch-type voltage sense amplifier with 18ps setup+hold time. In: 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, CA, pp. 314–605 (2007)

    Google Scholar 

  19. Tripathi, V.M., Mishra, S., Saikia, J., Dandapat, A.: A low-voltage 13T latch-type sense amplifier with regenerative feedback for ultra speed memory access. In: 2017 30th International Conference on VLSI Design and 2017 16th International Conference on Embedded Systems (VLSID), Hyderabad, pp. 341–346 (2017)

    Google Scholar 

  20. Hemaprabha, A., Vivek, K.: Comparative analysis of sense amplifiers for memories. In: 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, pp. 1–6 (2015)

    Google Scholar 

  21. Jefremow, M., et al.: Time-differential sense amplifier for sub-80mV bit line voltage embedded STT-MRAM in 40nm CMOS. In: 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, pp. 216–217 (2013)

    Google Scholar 

  22. Rajendra Prasad, S., Madhavi, B.K., Lal Kishore, K.: Design of 32nm forced stack CNTFET SRAM cell for leakage power reduction. In: IEEE Conference on Computing, Electronics and Electrical Technologies, pp. 629–633 (2012)

    Google Scholar 

  23. Mishra, J.K., Srivastava, H., Misra, P.K., Goswami, M.: A 40nm low power high stable SRAM cell using separate read port and sleep transistor methodology. In: 2018 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS), Hyderabad, India, pp. 1–5 (2018)

    Google Scholar 

  24. Sultana, T., Jagadesh, S., Naveen Kumar, M.: A novel dual-stack sleep technique for reactivation noise suppression in MTCMOS circuits. IOSR J. VLSI Signal Process. 3, 32–37 (2013)

    Google Scholar 

  25. Deepika, K.G., Priyadarshini, K.M., Raj, K.D.S.: Sleepy keeper approach for power performance tuning in VLSI design. Int. J. Electron. Commun. Eng. 6(1), 17–28 (2013)

    Google Scholar 

  26. Kaushik, C.S.H., Vanjarlapati, R.R., Krishna, V.M., Gautam, T., Elamaran, V.: VLSI design of low power SRAM architectures for FPGAs. In: 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE), pp. 1–4 (2014)

    Google Scholar 

  27. Choudhary, R., Padhy, S., Rout, N.: Enhanced robust architecture of single Bit SRAM cell using drowsy cache and super cut-off CMOS concept. Int. J. Ind. Electron. Electr. Eng. 3, 63–68 (2011)

    Google Scholar 

  28. Gajjar, J.P., Zala, A.S., Aggarwal, S.K.: Design and analysis of 32 bit SRAM architecture in 90nm CMOS technology. Int. Res. J. Eng. Technol. (IRJET) 03(04), 2729–2733 (2016)

    Google Scholar 

  29. Agrawal, R., Tomar, V.K.: Analysis of cache (SRAM) memory for core I ™ 7 processor. In: 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 40225 (2018)

    Google Scholar 

  30. Vanama, K., Gunnuthula, R., Prasad, G.: Design of low power stable SRAM cell. In: 2014 International Conference on Circuit Power and Computing Technologies (ICCPCT), pp. 1263–1267 (2014)

    Google Scholar 

  31. Saun, S., Kumar, H.: Design and performance analysis of 6T SRAM cell on different CMOS technologies with stability characterization. IOP Conf. Ser. Mater. Sci. Eng. 561, 012093 (2019)

    Article  Google Scholar 

  32. Bhaskar, A.: Design and analysis of low power SRAM cells. In: 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, pp. 1–5 (2017)

    Google Scholar 

  33. Zhang, Y., Wang, Z., Zhu, C., Zhang, L., Ji, A., Mao, L.: 28nm latch type sense amplifier coupling effect analysis. In: 2016 International Symposium on Integrated Circuits (ISIC), Singapore, pp. 1–4 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reeya Agrawal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agrawal, R. (2021). Comparative Study of Latch Type and Differential Type Sense Amplifier Circuits Using Power Reduction Techniques. In: Arunachalam, V., Sivasankaran, K. (eds) Microelectronic Devices, Circuits and Systems. ICMDCS 2021. Communications in Computer and Information Science, vol 1392. Springer, Singapore. https://doi.org/10.1007/978-981-16-5048-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5048-2_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5047-5

  • Online ISBN: 978-981-16-5048-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics