Skip to main content

Protein Purification by Ion Exchange Chromatography

  • Chapter
  • First Online:
Textbook on Cloning, Expression and Purification of Recombinant Proteins

Abstract

Separation of similar biomolecules and proteins with little or no differences in molecular weight or without tags can be difficult with chromatographic techniques such as affinity or size exclusion. To circumvent this problem, distinct physicochemical properties of protein molecules have been harnessed for their separation. Since proteins carry overall electrical charges due to their chemical composition; ion exchange chromatography (IEX) uses this property to separate positively or negatively charged molecules via interaction with charged ion exchange resins as stationary media. Charged proteins bind to the resins in normal buffering conditions and can be gradually eluted with increasing salt concentration or by changing the pH of the mobile phase. Depending on the protein’s isoelectric point (pI) value, cation or anion exchange chromatography media can be used. If the pH environment of a protein is lower than its pI, it will carry a positive surface charge and strongly bind the cation exchange resins, while proteins with the negative surface charge will bind to the anion exchange counterpart. The purpose of this chapter on ion exchange chromatography is to describe its basic principle, protocols, applications in protein purification as well as provide troubleshooting tips.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cummins PM, Rochfort KD, O’Connor BF. Ion-exchange chromatography: basic principles and application. In: Walls D, Loughran ST, editors. Protein chromatography: methods and protocols. New York, NY: Springer New York; 2017. p. 209–23.

    Chapter  Google Scholar 

  2. Roos PH. Chapter 1 – Ion exchange chromatography. In: Kastner M, editor. Journal of Chromatography Library. Netherland: Elsevier; 2000. p. 3–88.

    Google Scholar 

  3. Fekete S, Beck A, Veuthey JL, Guillarme D. Ion-exchange chromatography for the characterization of biopharmaceuticals. J Pharm Biomed Anal. 2015;113:43–55.

    Article  CAS  PubMed  Google Scholar 

  4. Production of synthetic polymeric compositions comprising sulphonated polymerizates of poly-vinyl aryl compounds and treatment of liquid media therewith, Google Patents; 1944.

    Google Scholar 

  5. Peterson EA, Sober HA. Chromatography of proteins. I. Cellulose ion-exchange adsorbents. J Am Chem Soc. 1956;78(4):751–5.

    Article  CAS  Google Scholar 

  6. Small H, Stevens TS, Bauman WC. Novel ion exchange chromatographic method using conductimetric detection. Anal Chem. 1975;47(11):1801–9.

    Article  CAS  Google Scholar 

  7. Fritz JS, Gjerde DT, Becker RM. Cation chromatography with a conductivity detector. Anal Chem. 1980;52(9):1519–22.

    Article  CAS  Google Scholar 

  8. Gjerde DT, Fritz JS. Effect of capacity on the behaviour of anion-exchange resins. J Chromatogr A. 1979;176(2):199–206.

    Article  CAS  Google Scholar 

  9. Gjerde DT, Fritz JS, Schmuckler G. Anion chromatography with low-conductivity eluents. J Chromatogr A. 1979;186:509–19.

    Article  CAS  Google Scholar 

  10. Duong-Ly KC, Gabelli SB. Using ion exchange chromatography to purify a recombinantly expressed protein. Methods Enzymol. 2014;541:95–103.

    Article  CAS  PubMed  Google Scholar 

  11. Singhal RP. Separation and analysis of nucleic acids and their constituents by ion-exclusion and ion-exchange column chromatography. Sep Purif Methods. 1974;3(2):339–98.

    Article  CAS  Google Scholar 

  12. Dragull K, Beck JJ. Isolation of natural products by ion-exchange methods. Methods Mol Biol. 2012;864:189–219.

    Article  CAS  PubMed  Google Scholar 

  13. Ćurković L, Cerjan-Stefanović Š, Filipan T. Metal ion exchange by natural and modified zeolites. Water Res. 1997;31(6):1379–82.

    Article  Google Scholar 

  14. Lucy CA. Evolution of ion-exchange: from Moses to the Manhattan project to modern times. J Chromatogr A. 2003;1000(1–2):711–24.

    Article  CAS  PubMed  Google Scholar 

  15. Alexandratos SD. Ion-exchange resins: a retrospective from industrial and engineering chemistry research. Ind Eng Chem Res. 2009;48(1):388–98.

    Article  CAS  Google Scholar 

  16. Edward Bańkowski M, Galewska Z, Gogiel T, Małkowski A, Romanowicz L, Sobolewski K, Wolańska M. Biochemistry workbook. Białystok: Medical University of Białystok.

    Google Scholar 

  17. Duncan JK, Chen AJ, Siebert CJ. Performance evaluation of non-porous versus porous ion-exchange packings in the separation of proteins by high-performance liquid chromatography. J Chromatogr. 1987;397:3–12.

    Article  CAS  PubMed  Google Scholar 

  18. Toshio Y, Masaharu S. Studies of polystyrene-based ion exchange fiber. I. The preparation and fundamental characteristics of polystyrene-based ion exchange fiber. Bull Chem Soc Jpn. 1983;56(12):3726–9.

    Article  Google Scholar 

  19. Hubicki Z, Wawrzkiewicz M, Wójcik G, Kołodyńska D, Wołowicz A. Ion exchange method for removal and separation of noble metal ions. In: Ion exchange-studies and applications. London: IntechOpen; 2015.

    Google Scholar 

  20. Ralph Himmelhoch S. [26] Chromatography of proteins on ion-exchange adsorbents. Methods Enzymol., Academic Press. 1971:273–86.

    Google Scholar 

  21. Stone MC, Carta G. Protein adsorption and transport in agarose and dextran-grafted agarose media for ion exchange chromatography. J Chromatogr A. 2007;1146(2):202–15.

    Article  CAS  PubMed  Google Scholar 

  22. Hughes EN, Engelsberg BN, Billings PC. Purification of nuclear proteins that bind to cisplatin-damaged DNA. Identity with high mobility group proteins 1 and 2. J Biol Chem. 1992;267(19):13520–7.

    Article  CAS  PubMed  Google Scholar 

  23. Levison PR, Badger SE, Hathi P, Davies MJ, Bruce IJ, Grimm V. New approaches to the isolation of DNA by ion-exchange chromatography. J Chromatogr A. 1998;827(2):337–44.

    Article  CAS  PubMed  Google Scholar 

  24. Harland CE. Ion exchange: theory and practice. Cambridge, London: Royal Society of Chemistry; 1994.

    Google Scholar 

  25. Boyer R. Modern experimental biochemistry. Delhi, India: Pearson Education; 2000.

    Google Scholar 

  26. Graziano SL, Huang RC. Chromatographic separation of chick brain chromatin proteins using a SP-sephadez column. Biochemistry. 1971;10(25):4770–7.

    Article  CAS  PubMed  Google Scholar 

  27. Groves ML. Preparation of some iron-binding proteins and alpha-Lactalbumin from bovine Milk. Biochim Biophys Acta. 1965;100:154–62.

    Article  CAS  PubMed  Google Scholar 

  28. Rombauts WA, Schroeder WA, Morrison M. Bovine lactoperoxidase. Partial characterization of the further purified protein. Biochemistry. 1967;6(10):2965–77.

    Article  CAS  PubMed  Google Scholar 

  29. Kent UM. Purification of antibodies using ion-exchange chromatography. Methods Mol Biol. 1999;115:19–22.

    CAS  PubMed  Google Scholar 

  30. Fweja LW, Lewis MJ, Grandison AS. Isolation of lactoperoxidase using different cation exchange resins by batch and column procedures. J Dairy Res. 2010;77(3):357–67.

    Article  CAS  PubMed  Google Scholar 

  31. MacGillivray AJ, Rickwood D. The heterogeneity of mouse-chromatin nonhistone proteins as evidenced by two-dimensional polyacrylamide-gel electrophoresis and ion-exchange chromatography. Eur J Biochem. 1974;41(1):181–90.

    Article  CAS  PubMed  Google Scholar 

  32. Tuchscherer G, Steiner V, Altmann K-H, Mutter M. De novo Design of Proteins. In: Dunn BM, Pennington MW, editors. Peptide analysis protocols. Totowa, NJ: Humana Press; 1994. p. 261–85.

    Chapter  Google Scholar 

  33. Lu CM, Wu YJ, Chen CC, Hsu JL, Chen JC, Chen JY, Huang CH, Ko YC. Identification of low-abundance proteins via fractionation of the urine proteome with weak anion exchange chromatography. Proteome Sci. 2011;9:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tjian R, Robbins A. Enzymatic activities associated with a purified simian virus 40 T antigen-related protein. Proc Natl Acad Sci U S A. 1979;76(2):610–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stoll VS, Blanchard JS. [4] Buffers: principles and practice. In: Deutscher MP, editor. Methods in enzymology. New York: Academic Press; 1990. p. 24–38.

    Google Scholar 

  36. Kang X, Frey DD. High-performance cation-exchange chromatofocusing of proteins. J Chromatogr A. 2003;991(1):117–28.

    Article  CAS  PubMed  Google Scholar 

  37. Larre C, Popineau Y, Loisel W. Fractionation of gliadins from common wheat by cation exchange FPLC. J Cereal Sci. 1991;14(3):231–41.

    Article  Google Scholar 

  38. Sakakibara Y, Yanagisawa H. Techniques for the separation of proteins by isoelectric point column chromatography. Nat Sci. 2007;56:45–9.

    CAS  Google Scholar 

  39. Pabst TM, Antos D, Carta G, Ramasubramanyan N, Hunter AK. Protein separations with induced pH gradients using cation-exchange chromatographic columns containing weak acid groups. J Chromatogr A. 2008;1181(1–2):83–94.

    Article  CAS  PubMed  Google Scholar 

  40. Perkins M, Theiler R, Lunte S, Jeschke M. Determination of the origin of charge heterogeneity in a murine monoclonal antibody. Pharm Res. 2000;17(9):1110–7.

    Article  CAS  PubMed  Google Scholar 

  41. Pabst TM, Carta G. pH transitions in cation exchange chromatographic columns containing weak acid groups. J Chromatogr A. 2007;1142(1):19–31.

    Article  CAS  PubMed  Google Scholar 

  42. DePhillips P, Lenhoff AM. Determinants of protein retention characteristics on cation-exchange adsorbents. J Chromatogr A. 2001;933(1–2):57–72.

    Article  CAS  PubMed  Google Scholar 

  43. Debelak D, Fisher J, Iuliano S, Sesholtz D, Sloane DL, Atkinson EM. Cation-exchange high-performance liquid chromatography of recombinant adeno-associated virus type 2. J Chromatogr B Biomed Sci Appl. 2000;740(2):195–202.

    Article  CAS  PubMed  Google Scholar 

  44. Rindler-Ludwig R, Braunsteiner H. Cationic proteins from human neutrophil granulocytes. Evidence for their chymotrypsin-like properties. Biochim Biophys Acta. 1975;379(2):606–17.

    Article  CAS  PubMed  Google Scholar 

  45. Lim T-k, Nakamura N, Matsunaga T. Automated flow immunoassay for detection of food allergen using anion-exchange resin and alkaline phosphatase conjugated immunoglobulin G. Anal Chim Acta. 1998;370(2):207–14.

    Article  CAS  Google Scholar 

  46. Johansson BL, Belew M, Eriksson S, Glad G, Lind O, Maloisel JL, Norrman N. Preparation and characterization of prototypes for multi-modal separation media aimed for capture of negatively charged biomolecules at high salt conditions. J Chromatogr A. 2003;1016(1):21–33.

    Article  CAS  PubMed  Google Scholar 

  47. Clezardin P, Hunter NR, MacGregor IR, MacGregor JL, Pepper DS, Dawes J. Tandem purification of mouse IgM monoclonal antibodies produced in vitro using anion-exchange and gel fast protein liquid chromatography. J Chromatogr. 1986;358(1):209–18.

    Article  CAS  PubMed  Google Scholar 

  48. Manji B, Hill A, Kakuda Y, Irvine DM. Rapid separation of milk whey proteins by anion exchange chromatography. J Dairy Sci. 1985;68(12):3176–9.

    Article  CAS  PubMed  Google Scholar 

  49. Shan L, Anderson DJ. Effect of buffer concentration on gradient chromatofocusing performance separating proteins on a high-performance DEAE column. J Chromatogr A. 2001;909(2):191–205.

    Article  CAS  PubMed  Google Scholar 

  50. Clezardin P, McGregor JL, Manach M, Robert F, Dechavanne M, Clemetson KJ. Isolation of thrombospondin released from thrombin-stimulated human platelets by fast protein liquid chromatography on an anion-exchange mono-Q column. J Chromatogr. 1984;296:249–56.

    Article  CAS  PubMed  Google Scholar 

  51. Tsuneda S, Saito K, Furusaki S, Sugo T. High-throughput processing of proteins using a porous and tentacle anion-exchange membrane. J Chromatogr A. 1995;689(2):211–8.

    Article  CAS  Google Scholar 

  52. Urabe M, Xin KQ, Obara Y, Nakakura T, Mizukami H, Kume A, Okuda K, Ozawa K. Removal of empty capsids from type 1 adeno-associated virus vector stocks by anion-exchange chromatography potentiates transgene expression. Mol Ther. 2006;13(4):823–8.

    Article  CAS  PubMed  Google Scholar 

  53. Meyer DJ, Coles B, Pemble SE, Gilmore KS, Fraser GM, Ketterer B. Theta, a new class of glutathione transferases purified from rat and man. Biochem J. 1991;274(Pt 2):409–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lindblom H, Axio-Fredriksson UB, Cooper EH, Turner R. Separation of urine proteins on the anion-exchange resin mono Q. J Chromatogr. 1983;273(1):107–16.

    Article  CAS  PubMed  Google Scholar 

  55. Kunz C, Lonnerdal B. Human-milk proteins: analysis of casein and casein subunits by anion-exchange chromatography, gel electrophoresis, and specific staining methods. Am J Clin Nutr. 1990;51(1):37–46.

    Article  CAS  PubMed  Google Scholar 

  56. Hearn MT, Hodder AN, Aguilar MI. High-performance liquid chromatography of amino acids, peptides and proteins. LXXXVII. Comparison of retention and bandwidth properties of proteins eluted by gradient and isocratic anion-exchange chromatography. J Chromatogr. 1988;458:27–44.

    Article  CAS  PubMed  Google Scholar 

  57. Seely JE, Richey CW. Use of ion-exchange chromatography and hydrophobic interaction chromatography in the preparation and recovery of polyethylene glycol-linked proteins. J Chromatogr A. 2001;908(1–2):235–41.

    Article  CAS  PubMed  Google Scholar 

  58. Yamamoto S, Nakanishi K, Matsuno R. Ion-exchange chromatography of proteins. Boca Raton: CRC Press; 1988.

    Book  Google Scholar 

  59. Salgin S, Takac S, Ozdamar TH. Effect of ionic environments on the adsorption and diffusion characteristics of serine alkaline protease enzyme in polyethersulfone ultrafiltration membranes. J Colloid Interface Sci. 2006;299(2):806–14.

    Article  CAS  PubMed  Google Scholar 

  60. Sata T, Izuo R, Mizutani Y, Yamane R. Transport properties of ion-exchange membranes in the presence of surface active agents. J Colloid Interface Sci. 1972;40(3):317–28.

    Article  CAS  Google Scholar 

  61. Oliver RT. Cation-exchange behavior of di-, tri-, and tetravalent metal ions in ethylenediammonium salt solutions. Iowa: Iowa State University; 1959.

    Book  Google Scholar 

  62. Beynon RJ, Easterby JS. Buffer solutions: the basics. Florida: Taylor & Francis; 2004.

    Book  Google Scholar 

  63. Kang K, McCoy BJ. Protein separation by ion exchange chromatography: a model for gradient elution. Biotechnol Bioeng. 1989;33(6):786–90.

    Article  CAS  PubMed  Google Scholar 

  64. Xu T. Regeneration of the ion-exchange resin. In: Drioli E, Giorno L, editors. Encyclopedia of membranes. Berlin, Heidelberg: Springer Berlin Heidelberg; 2015. p. 1–3.

    Google Scholar 

  65. Williams PA, Hudson MJ. Recent developments in ion exchange: 2. Singapore: Springer Science & Business Media; 2012.

    Google Scholar 

  66. Rocklin RD, Pohl CA, Schibler JA. Gradient elution in ion chromatography. J Chromatogr A. 1987;411:107–19.

    Article  CAS  Google Scholar 

  67. Noble JE, Bailey MJA. Chapter 8: Quantitation of protein. In: Burgess RR, Deutscher MP, editors. Methods in enzymology. New York: Academic Press; 2009. p. 73–95.

    Google Scholar 

  68. Kornecki M, Mestmacker F, Zobel-Roos S, Heikaus de Figueiredo L, Schluter H, Strube J. Host cell proteins in biologics manufacturing: the good, the bad, and the ugly. Antibodies. 2017;6(3)

    Google Scholar 

  69. Singh RS, Walia AK, Kennedy JF. Purification and characterization of a mitogenic lectin from Penicillium duclauxii. Int J Biol Macromol. 2018;116:426–33.

    Article  CAS  PubMed  Google Scholar 

  70. Gunzer G, Hennrich N. Purification of alpha 1-proteinase inhibitor by triazine dye affinity chromatography, ion-exchange chromatography and gel filtration on Fractogel TSK. J Chromatogr. 1984;296:221–9.

    Article  CAS  PubMed  Google Scholar 

  71. Liu W, Sun Y, Yu J, Chen Q, Bao Z, Fan X, Liang Y, Peng X, Xian M, Nian R. Advance chromatin extraction improves the performance of electropositive mixed-mode chromatography as a capture step and enables its integration with void-exclusion anion exchange chromatography as a two-column-step purification platform for monoclonal antibody production. Biochem Eng J. 2019;142:145–52.

    Article  CAS  Google Scholar 

  72. Scott CS, Patel M, Stark AN, Roberts BE. Fast protein liquid chromatography (FPLC) of leukaemic cell n-acetyl beta-d hexosaminidases. Leuk Res. 1987;11(5):437–44.

    Article  CAS  PubMed  Google Scholar 

  73. Kamble RD, Jadhav AR. Isolation, purification, and characterization of xylanase produced by a new species of bacillus in solid state fermentation. Int J Microbiol. 2012;2012:683193.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bajaj BK, Singh NP. Production of xylanase from an Alkalitolerant Streptomyces sp. 7b under solid-state fermentation, its purification, and characterization. Appl Biochem Biotechnol. 2010;162(6):1804–18.

    Article  CAS  PubMed  Google Scholar 

  75. Raoufinia R, Mota A, Keyhanvar N, Safari F, Shamekhi S, Abdolalizadeh J. Overview of albumin and its purification methods. Adv Pharm Bull. 2016;6(4):495–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Raines EW, Ross R. Purification of human platelet-derived growth factor. Methods Enzymol. 1985;109:749–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Advanced Centre for Treatment, Research and Education in Cancer (ACTREC) for providing necessary infrastructure and resources for successful completion of the chapter. The authors acknowledge Ms. Chanda Baisane, Bose Lab for formatting the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kakoli Bose .

Editor information

Editors and Affiliations

Problems

Problems

Multiple Choice Questions

  1. 1.

    The capacity of the resin for ion exchange relies on:

    1. (a)

      The cumulative molecular mass of the resin

    2. (b)

      Length of the ion exchange resin

    3. (c)

      The total number of ion active groups

    4. (d)

      Solubility of the ion exchange resins

  2. 2.

    The concept of ion exchange chromatography is based on:

    1. (a)

      Electrostatic attraction

    2. (b)

      Electrical mobility of ionic species

    3. (c)

      Adsorption

    4. (d)

      Partition

  3. 3.

    In anion exchange chromatography:

    1. (a)

      The column contains negatively charged beads where positively charged proteins bind

    2. (b)

      The column contains positively charged beads where negatively charged proteins bind

    3. (c)

      The column contains both positive and negatively charged beads where proteins bind depending on their net charge

    4. (d)

      All of these

Subjective Questions

  1. 1.

    A protein has an isoelectric point (pI) of 5.2. What is the net charge on this protein in BICINE [(N, n-bis(2-hydroxyethyl)glycine] buffer (pH 8.5)? Explain.

  2. 2.

    A crude lysate sample comprising four proteins (1, 2, 3, and -galactosidase) is obtained by a protein biochemist. He wants to purify β-galactosidase using ion exchange chromatography. The respective isoelectric points of these proteins are enlisted below:

    Protein

    Isoelectric point (pI)

    1

    3.7

    2

    6.8

    3

    9.5

    β-Galactosidase

    5.3

He equilibrated an anion exchange column using a buffer of pH 5.0. (A) At this condition, which protein(s) from the lysate sample will bind to the column? (B) How the bound protein(s) can be eluted from the anion exchange column? He then recognized the fraction containing β-galactosidase from the anion exchange column and opted to purify it using a cation exchange column. (C) Explain how a cation exchange column may be used to separate β-galactosidase from any residual contaminated protein (s).

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakraborty, A., Puja, R., Bose, K. (2022). Protein Purification by Ion Exchange Chromatography. In: Bose, K. (eds) Textbook on Cloning, Expression and Purification of Recombinant Proteins. Springer, Singapore. https://doi.org/10.1007/978-981-16-4987-5_7

Download citation

Publish with us

Policies and ethics