Skip to main content

Selection of Cloning and Expression Plasmid Vectors

  • Chapter
  • First Online:
Textbook on Cloning, Expression and Purification of Recombinant Proteins

Abstract

Purification of proteins using recombinant DNA technology is crucial for studying its structure, function, and interactions with other ligands/macromolecules as well as for therapeutic purposes. Thus, the need for purified proteins has been increasing day by day both in basic research labs and at the industrial level. Major developments in the field of recombinant DNA technology have been focused on improving the process of protein purification. However, the very first step in this process is cloning and expression of isolated protein coding genes through engineered plasmid molecules (self-replicating extrachromosomal circular DNA molecules) called vectors. Therefore, with the increasing demand for purified proteins, the need for more efficient and robust vectors was perceived. Today, a wide array of vectors for both cloning and expressing the gene of interest are being engineered that suit almost every requirement of the researcher. However, the challenge lies in choosing the correct vector for a specific requirement, and hence a thorough knowledge of all the available vectors used for different purposes becomes imperative. This chapter aims at guiding the researchers toward choosing appropriate vectors to cater to their various cloning requirements. It also provides troubleshooting tips and discusses latest advancements in this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schacherer J. Beyond the simplicity of Mendelian inheritance. C R Biol. 2016;339(7–8):284–8. (1768-3238 (Electronic))

    Article  PubMed  Google Scholar 

  2. Brondyk WH. Selecting an appropriate method for expressing a recombinant protein. Methods Enzymol. 2009;463:131–47. (1557-7988 (Electronic))

    Article  CAS  PubMed  Google Scholar 

  3. Johnson IS. Human insulin from recombinant DNA technology. Science. 1983;219(4585):632–7. (0036-8075 (Print))

    Article  CAS  PubMed  Google Scholar 

  4. Von Fange T, et al. Clinical inquiries: can recombinant growth hormone effectively treat idiopathic short stature? J Fam Pract. 2008;57(9):611–2. (1533-7294 (Electronic))

    Google Scholar 

  5. Manco-Johnson MJ. Advances in the care and treatment of children with hemophilia. Semin Thromb Hemost. 2003;29(6):585–94. (1878-1926 (Electronic))

    Article  PubMed  Google Scholar 

  6. Koçoğlu T, Yalçinkaya T. Recombinant DNA technology. Mikrobiyol Bul. 1992;26(2):177–88. (0374-9096 (Print))

    PubMed  Google Scholar 

  7. Mishra V. Affinity tags for protein purification. Curr Protein Pept Sci. 2020;21(8):821–30. (1875-5550 (Electronic))

    Article  CAS  PubMed  Google Scholar 

  8. Kimple ME, Brill AL, Pasker RL. Overview of affinity tags for protein purification. Curr Protoc Protein Sci. 2013;73:9.9.1–9.9.23. (1934-3663 (Electronic))

    Article  Google Scholar 

  9. Brown TA. Gene cloning and DNA analysis: an introduction. 6th ed. Hoboken, NJ: Wiley-Blackwell; 2010.

    Google Scholar 

  10. Lodish H, Berk A, Zipursky SL. Molecular cell biology. 4th ed. New York: W.H. Freeman; 2000.

    Google Scholar 

  11. Primrose SB, Twyman R. Principles of gene manipulation and genomics. 7th ed. Hoboken, NJ: Wiley-Blackwell; 2006.

    Google Scholar 

  12. EMBL. Cloning Per Strategy. https://www.embl.de/pepcore/pepcore_services/cloning/pcr_strategy/index.html.

  13. Tokmakov AA, et al. Multiple post-translational modifications affect heterologous protein synthesis. J Biol Chem. 2012;287(32):27106–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. del Solar G, et al. Replication and control of circular bacterial plasmids. Microbiol Molecul Biol Rev MMBR. 1998;62(2):434–64.

    Article  Google Scholar 

  15. Amann E, Brosius J, Ptashne M. Vectors bearing a hybrid trp-lac promoter useful for regulated expression of cloned genes in Escherichia coli. Gene. 1983;25(2–3):167–78. (0378-1119 (Print))

    Article  CAS  PubMed  Google Scholar 

  16. Guzman LM, et al. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol. 1995;177(14):4121–30. (0021-9193 (Print))

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Berg JM, Tymoczko JL, Stryer L. Biochemistry. 7th ed. New York: WH Freeman; 2012.

    Google Scholar 

  18. Thieman WJ, Palladino MA. Introduction to biotechnology. San Francisco: Pearson/Benjamin Cummings; 2004.

    Google Scholar 

  19. Balbás P, Soberón X, et al. Plasmid vector pBR322 and its special-purpose derivatives--a review. Gene. 1986;50(1–3):3–40. (0378-1119 (Print))

    Article  PubMed  Google Scholar 

  20. Bajpai B. High capacity vectors. Adv Biotechnol. 2013;86048301:1–10.

    Google Scholar 

  21. Wood WN, et al. Enhancing yields of low and single copy number plasmid DNAs from Escherichia coli cells. J Microbiol Methods. 2017;133:46–51.

    Article  CAS  PubMed  Google Scholar 

  22. Dumon-Seignovert L, Cariot G, Vuillard L. The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3). Protein Expr Purif. 2004;37(1):203–6. (1046-5928 (Print))

    Article  CAS  PubMed  Google Scholar 

  23. Balbas P, Soberon X, Bolivar F, Rodriguez RL. The plasmid, pBR322. 1988. PMID: 3061523; https://doi.org/10.1016/b978-0-409-90042-2.50007-6.

  24. Potapova IA, Repin VE, Shchelkunov SN. Maintenance stability of the pBR322 and pBR327 vector plasmids in Escherichia coli cells during multiple passages. 1985. PMID: 3886482.

    Google Scholar 

  25. Chan V, et al. The effect of increasing plasmid size on transformation efficiency in Escherichia coli. J Exp Microbiol Immunol. 2002;2. (0378-1119 (Print))

    Google Scholar 

  26. Vieira J, Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982;19(3):259–68. (0378-1119 (Print))

    Article  CAS  PubMed  Google Scholar 

  27. Maas S. Efficient and rapid procedure for blue-white screening of recombinant bacterial clones. Biotechniques. 1999;27(6):1126–8. (0736-6205 (Print))

    Article  CAS  PubMed  Google Scholar 

  28. Chauthaiwale VM, Therwath A, Deshpande VV. Bacteriophage lambda as a cloning vector. Microbiol Rev. 1992;56(4):577–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Messing J. Cloning in M13 phage or how to use biology at its best. Gene. 1991;100:3–12. (0378-1119 (Print))

    Article  CAS  PubMed  Google Scholar 

  30. van Regenmortel M, Mahy B. Encyclopedia of virology. New York: Academic Press Inc.; 2008. p. 3192.

    Google Scholar 

  31. Ngo-Duc T-T, et al. M13 bacteriophage spheroids as scaffolds for directed synthesis of spiky gold nanostructures. Nanoscale. 2018;10(27):13055–63.

    Article  CAS  PubMed  Google Scholar 

  32. Glick BR, Pasternak JJ, Patten CL. Molecular biotechnology: principles and applications of recombinant DNA. Washington, DC: ASM Press; 2010.

    Google Scholar 

  33. Preston A. Methods in molecular biology. In: E. coli plasmid vectors. Totowa, NJ: Humana Press.

    Google Scholar 

  34. Sternberg N. Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. Proc Natl Acad Sci U S A. 1990;87(1):103–7. (0027-8424 (Print))

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Coren JS. Retrofitting the BAC cloning vector pBeloBAC11 by the insertion of a mutant loxP site. BMC Res Notes. 2017;10(1):344.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Anilionyte O, et al. Short, auto-inducible promoters for well-controlled protein expression in Escherichia coli. Appl Microbiol Biotechnol. 2018;102(16):7007–15. (1432-0614 (Electronic))

    Article  CAS  PubMed  Google Scholar 

  37. Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol. 2014;5:172.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Duong-Ly KC, Gabelli SB. Affinity purification of a recombinant protein expressed as a fusion with the maltose-binding protein (MBP) tag. Methods Enzymol. 2015;559:17–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Harper S, Speicher DW. Purification of proteins fused to glutathione S-transferase. Methods Molecul Biol (Clifton, NJ). 2011;681:259–80.

    CAS  Google Scholar 

  40. Mierendorf RC, et al. Expression and purification of recombinant proteins using the pET system. Methods Mol Med. 1998;13:257–92. (1543-1894 (Print))

    CAS  PubMed  Google Scholar 

  41. Shilling PJ, et al. Improved designs for pET expression plasmids increase protein production. Commun Biol. 2020;3:214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Raran-Kurussi S, et al. Removal of affinity tags with TEV protease. Methods Mol Biol. 2017;1586:221–30. (1940-6029 (Electronic))

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Waugh DS. An overview of enzymatic reagents for the removal of affinity tags. Protein Expr Purif. 2011;80(2):283–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mierendorf RC, Morris BB, Hammer B, Novy RE. Expression and purification of recombinant proteins using the pET system. 1998. PMID: 21390849; https://doi.org/10.1385/0-89603-485-2:257.

  45. Costa S, et al. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Front Microbiol. 2014;5:63.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Aatsinki JT, Rajaniemi HJ. An alternative use of basic pGEX vectors for producing both N- and C-terminal fusion proteins for production and affinity purification of antibodies. 2005. PMID: 15766870; https://doi.org/10.1016/j.pep.2004.11.012.

  47. Branco LM, et al. Bacterial-based systems for expression and purification of recombinant Lassa virus proteins of immunological relevance. Virol J. 2008;5:74.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lee SB, et al. Production of bioactive chicken follistatin315 in Escherichia coli. Appl Microbiol Biotechnol. 2014;98(24):10041–51. (1432-0614)

    Article  CAS  PubMed  Google Scholar 

  49. Labs NEB. pMALâ„¢ protein fusion and purification system. Ipswich, MA: New England Biolabs Inc.

    Google Scholar 

  50. Yuan W, et al. Effect of different tags on pulldown assays implemented by LMO2 fusion protein. Sheng Wu Gong Cheng Xue Bao. 2008;24(5):887–91. (1000-3061 (Print))

    CAS  PubMed  Google Scholar 

  51. Raines RT, et al. The S. Tag fusion system for protein purification. Methods Enzymol. 2000;326:362–76. (0076-6879 (Print))

    Article  CAS  PubMed  Google Scholar 

  52. Gauttam R, Mukhopadhyay A, Singer SW. Construction of a novel dual-inducible duet- expression system for gene (over)expression in Pseudomonas putida. Plasmid. 2020;110:102514.

    Article  CAS  PubMed  Google Scholar 

  53. Gregorio NE, Levine MZ, Oza JP. A user’s guide to cell-free protein synthesis. Methods Protoc. 2019;2(1):24.

    Article  CAS  PubMed Central  Google Scholar 

  54. Makrides SC. Vectors for gene expression in mammalian cells. New Comprehen Biochem. 2003;38:9–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Advanced Centre for Treatment, Research and Education in Cancer (ACTREC) for providing necessary infrastructure and resources for successful completion of the chapter. The authors acknowledge Ms. Chanda Baisane and Mrs Snehal Pandav Mudrale, Bose Lab, ACTREC for critical inputs and formatting of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kakoli Bose .

Editor information

Editors and Affiliations

Problems

Problems

Multiple Choice Questions

  1. 1.

    The site on an expression plasmid where transcription factors bind is known as:

    1. (a)

      Ori

    2. (b)

      Promoter

    3. (c)

      Polylinker

    4. (d)

      rop

  2. 2.

    The most suitable vector for constructing genomic libraries would be:

    1. (a)

      Cosmids

    2. (b)

      λ replacement vectors

    3. (c)

      BAC

    4. (d)

      pET vectors

  3. 3.

    The protein that binds to the pLac promoter to prevent the expression of lacZ gene is known as:

    1. (a)

      Lactose

    2. (b)

      IPTG

    3. (c)

      X- gal

    4. (d)

      Repressor

Subjective Questions

  1. 1.

    A gene encoding protein X was cloned into a plasmid containing 6×-His tag. After induction of gene expression, the protein was found to be expressed. When the protein was purified using an appropriate resin, it was found to be unstable and insoluble. Suggest a way in which such a protein can be stabilized and purified.

  2. 2.

    A gene 50–60 kB in size needs to be cloned in an appropriate vector for further study. Which cloning vector would be suitable for cloning such a moderately large fragment without loss of the gene and at the same time ensuring efficient host transformation?

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kulkarni, R., Bose, R., Bose, K. (2022). Selection of Cloning and Expression Plasmid Vectors. In: Bose, K. (eds) Textbook on Cloning, Expression and Purification of Recombinant Proteins. Springer, Singapore. https://doi.org/10.1007/978-981-16-4987-5_3

Download citation

Publish with us

Policies and ethics