Skip to main content

Phylogenomics, Microbiome and Morphological Insights of Truffles: The Tale of a Sensory Stimulating Ectomycorrhizal Filamentous Fungus

  • Chapter
  • First Online:
Extremophilic Fungi

Abstract

Truffles are generally considered as subterraneous ascomycete, capable of forming ectomycorrhizas with plant roots via symbiosis. The fruiting body of truffles are widely appreciated around the world for its distinctive aroma. Although the plantation system for truffles is established, it still faces an array of challenges. The queries are very unique on its own and yet to be resolved. The taxonomic classification seems to be highly complicated and needs proper sampling to achieve progress using advanced technologies. The truffles being an extremophile need precise soil and weather conditions for its growth. The unique feature of truffle is its extreme slow growth rate for rejuvenation under optimum cultivation conditions. While positioning of truffles is a very crucial criterion to understand the type of symbiosis it maintains with different plants. Together with this it is apprehended that it is the plant and the rhizospheric soil which partially determines the microbial community within truffles. This in turn partially contributes in producing the distinctive aroma of truffles. Nevertheless, it is worth mentioning that a truffle renders several pharmacogenetic effects on human system, which need more investigation to unravel this exorbitant creation of nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham BG, Berger RG (1994) Higher fungi for generating aroma components through novel biotechnologies. J Agric Food Chem 42:2344–2348

    Article  CAS  Google Scholar 

  • Al Obaydi MF, Hamed WM, Al Kury LT, Talib WH (2020) Terfezia boudieri: a desert truffle with anticancer and immunomodulatory activities. Front Nutr 7:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Al-Laith AAA (2010) Antioxidant components and antioxidant/antiradical activities of desert truffle (Tirmania nivea) from various middle eastern origins. J Food Compos Anal 23:15–22

    Article  CAS  Google Scholar 

  • Antonietta M, Claude M, Paola B (2006) Truffles: much more than a prized and local fungal delicacy. FEMS Microbiol Lett 260:1–8

    Article  CAS  Google Scholar 

  • Arfi K, Landaud S, Bonnarme P (2006) Evidence for distinct Lmethionine catabolic pathways in the east Geotrichum candidum and the bacterium Brevibacterium linens. Appl Environ Microbiol 72:2155–2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beara IN, Lesjak MM, Četojević-Simin DD, Marjanović ŽS, Ristić JD, Mrkonjić ZO, Mimica-Dukić NM (2014) Phenolic profile, antioxidant, anti-inflammatory and cytotoxic activities of black (Tuber aestivum Vittad.) and white (Tuber magnatum Pico) truffles. Food Chem 165:460–466

    Article  CAS  PubMed  Google Scholar 

  • Bellesia F, Pinetti A, Bianchi A, Tirillini B (1998) Volatile compounds of white truffle (Tuber magnatum Pico.) from middle Italy. Flavour Fragr J 11:239–243

    Article  Google Scholar 

  • Bending GD, Lincoln SD (1999) Characterization of volatile sulphur containing compounds produced during decomposition of Barassica juncea tissue in soil. Soil Biol Biochem 31:695–703

    Article  CAS  Google Scholar 

  • Bertault G, Rousset F, Fernandez D, Berthomieu A, Hochberg ME, Callot G, Raymond M (2001) Population genetics and dynamics of the black truffle in a man-made truffle field. Heredity 86:451–458

    Article  CAS  PubMed  Google Scholar 

  • Biswas P, Das M, Boral S, Mukherjee G, Chaudhury K, Banerjee R (2020) Enzyme mediated resistant starch production from Indian Fox Nut (Euryale ferox) and studies on digestibility and functional properties. Carbohydr Polym 237:116158

    Article  CAS  PubMed  Google Scholar 

  • Bradai L, Bissati S, Chenchouni H, Amrani K (2015) Effects of climate on the productivity of desert truffles beneath hyper-arid conditions. Int J Biometeorol 59(7):907–915

    Article  PubMed  Google Scholar 

  • Bruns TD, Gardes M (1993) Molecular tools for the identification of ectomycorrhizal fungi—taxon-specific oligonucleotide probes for suilloid fungi. Mol Ecol 2(4):233–242

    Article  CAS  PubMed  Google Scholar 

  • Büntgen U, Egli S, Camarero JJ, Fischer EM, Stobbe U, Kauserud H, Tegel W, Sproll L, Stenseth NC (2012) Drought-induced decline in Mediterranean truffle harvest. Nat Clim Change 2:827–829

    Article  Google Scholar 

  • Carrillo C, del Cavia M, Alonso-Torre SR (2012) Antitumor effect of oleic acid; mechanisms of action. A review. Nutr Hosp 27:1860–1865

    CAS  PubMed  Google Scholar 

  • Casarica A, Moscovici M, Daas M, Nicu I, Panteli M, Rasit I (2016) A purified extract from brown truffles of the species Terfezia claveryi chatin and its antimicrobial activity. Farmacia 64:298–301

    CAS  Google Scholar 

  • Chen G, Zhang S, Ran C, Wang L, Kan J (2016) Extraction, characterization and antioxidant activity of water-soluble polysaccharides from Tuber huidongense. Int J Biol Macromol 91:431–442

    Article  CAS  PubMed  Google Scholar 

  • Chiron N, Michelot D (2005) Mushrooms odors, chemistry and role in the biotic interactions—a review (in French). Cryptogam Mycol 26(4):299–364

    Google Scholar 

  • Claus R, Hoppen HO, Karg H (1981) The secret of truffles: a steroidal pheromone? Exp Dermatol 37:1178–1179

    CAS  Google Scholar 

  • Dahham SS, Al-Rawi SS, Ibrahim AH, Majid ASA, Majid AMSA (2016) Antioxidant, anticancer, apoptosis properties and chemical composition of black truffle Terfezia claveryi. Saudi J Biol Sci 25:1524–1534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Das M, Kundu D, Singh J, Rastogi A, Banerjee R (2017) Physiology and Biochemistry of Indigenous Tribal Liquor Haria: a state of art. Adv Biotechnol Microbiol 6(2):1–5

    Google Scholar 

  • Das M, Kundu D, Singh J, Rastogi A, Mukherjee G, Chatterjee A, Banerjee R (2018) Rejuvenation of metabolic cascades for controlling aging through bioactive compounds: a review. J Nutr Food Sci Forecast 1:1–6

    Google Scholar 

  • Das M, Mukherjee G, Biswas P, Mahle R, Banerjee R (2020) Black truffle—an exorbitant creation of nature. Austin J Nutr Metab 7(1):1–3

    Google Scholar 

  • Dash A, Kundu D, Das M, Bose D, Adak S, Banerjee R (2016) Food biotechnology: a step towards improving nutritional quality of food for Asian countries. Recent Pat Biotechnol 10(1):43–57

    Article  CAS  PubMed  Google Scholar 

  • De Angelis F, Arcadi A, Marinelli F et al (1996) Partial structures of truffle melanins. Phytochemistry 43:1103–1106

    Article  Google Scholar 

  • Dib-Bellahouel S, Fortas Z (2011) Antibacterial activity of various fractions of ethyl acetate extract from the desert truffle, Tirmania pinoyi, preliminarily analyzed by gas chromatography–mass spectrometry (GC–MS). Afr J Biotechnol 10:9694–9699

    Article  Google Scholar 

  • Doğan HH, Aydın S (2013) Determination of antimicrobial effect, antioxidant activity and phenolic contents of desert truffle in Turkey. Afr J Tradit Complement Altern Med 10:52–58

    PubMed  PubMed Central  Google Scholar 

  • Elsayed EA, El Enshasy H, Wadaan MAM, Aziz R (2014) Mushrooms: a potential natural source of anti-inflammatory compounds for medical applications. Mediators Inflamm 2014:805841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Friedman M (2016) Mushroom polysaccharides: chemistry and antiobesity, antidiabetes, anticancer, and antibiotic properties in cells, rodents, and humans. Foods 5:80

    Article  PubMed Central  CAS  Google Scholar 

  • Frizzi G, Lalli G, Miranda M, Pacioni G (2001) Intraspecific isozyme variability in Italian populations of the white truffle Tuber magnatum. Mycol Res 105:365–369

    Article  CAS  Google Scholar 

  • Ghosh T, Maity TK, Singh J (2011) Evaluation of antitumor activity of stigmasterol, a constituent isolated from Bacopa monnieri Linn aerial parts against Ehrlich ascites carcinoma in mice. Orient Pharm Exp Med 11:41–49

    Article  Google Scholar 

  • Gioacchini AM, Menotta M, Polidori E, Giomaro G, Stocchi V (2002) Solid-phase microextraction gas chromatography/ion trap mass spectrometry and multistage mass spectrometry experiments in the characterization of germacrene D. J Mass Spectrom 37:1229–1235

    Article  CAS  PubMed  Google Scholar 

  • Guidi C, Zeppa S, Annibalini G, Pierleoni R, Guescini M, Buffalini M, Zambonelli A, Stocchi V (2006) The isoprenoid pathway in the ectomycorrhizal fungus Tuber borchii Vittad.: cloning and characterization of the tbhmgr, tbfpps and tbsqs genes. Curr Genet 50:393–404

    Article  CAS  PubMed  Google Scholar 

  • Hall IR, Yun W, Amicucci A (2003) Cultivation of edible ectomycorrhizal mushrooms. Trends Biotechnol 21:433–438

    Article  CAS  PubMed  Google Scholar 

  • Hamza A, Jdir H, Zouari N (2016) Nutritional, antioxidant and antibacterial properties of Tirmania nivea, a wild edible desert truffle from Tunisia arid zone. Med Aromat Plants 5:258

    Article  CAS  Google Scholar 

  • Harki EH, Bouya D, Dargent R (2006) Maturation-associated alterations of the biochemical characteristics of the black truffle Tuber melanosporum Vitt. Food Chem 99:394–400. https://doi.org/10.1016/j.foodchem.2005.08.030

    Article  CAS  Google Scholar 

  • Henrion B, Chevalier G, Martiw F (1994) Typing truffle species by PCR amplification of the ribosomal DNA spacers. Mycol Res 98(1):37–43

    Article  CAS  Google Scholar 

  • Janakat S, Nassar M (2010) Hepatoprotective activity of desert truffle (Terfezia claveryi) in comparison with the effect of Nigella sativa in the rat. Pak J Nutr 9:52–56

    Article  Google Scholar 

  • Janakat S, Al-Fakhiri S, Sallal AK (2004) A promising peptide antibiotic from Terfezia claveryi aqueous extract against Staphylococcus aureus in vitro. Phytother Res 18(10):810–813

    Article  CAS  PubMed  Google Scholar 

  • Kendrick B (1985) The fifth kingdom. Mycologue, Waterloo

    Google Scholar 

  • Khadri H, Aldebasi YH, Riazunnisa K (2017) Truffle mediated (Terfezia claveryi) synthesis of silver nanoparticles and its potential cytotoxicity in human breast cancer cells (MCF-7). Afr J Biotechnol 16:1278–1284

    CAS  Google Scholar 

  • Kües U, Martin F (2011) On the road to understanding truffles in the underground. Fungal Genet Biol 48(6):555–560

    Article  PubMed  Google Scholar 

  • Kundu D, Das M, Mahle R, Biswas P, Karmakar S, Banerjee R (2020) Citrus fruits. In: Valorization of fruit processing by-products. Academic Press, New York, pp 145–166

    Chapter  Google Scholar 

  • Laessoe T, Hansen K (2007) Truffle trouble: what happened to the Tuberales? Mycol Res 111:1075–1099

    Article  PubMed  CAS  Google Scholar 

  • Li LF, Liu HB, Zhang QW, Li ZP, Wong TL, Fung HY, Zhang JX, Bai SP, Lu AP, Han QB (2018) Comprehensive comparison of polysaccharides from Ganoderma lucidum and G. sinense: chemical, antitumor, immunomodulating and gut-microbiota modulatory properties. Sci Rep 8:6172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu M, Nauta A, Francke C, Siezen RJ (2008) Comparative genomics of enzymes in flavor-forming pathways from amino acids in lactic acid bacteria. Appl Environ Microbiol 74:4590–4600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Q, Zhang J, Yan L, Tang Y, Ding X, Yang Z, Sun Q (2011) Composition and antioxidant activity of water-soluble polysaccharides from Tuber indicum. J Med Food 14(12):1609–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B, Morin E, Noel B, Percudani R, Porcel B, Rubini A, Amicucci A, Amselem J, Anthouard V, Arcioni S, Artiguenave F, Aury JM, Ballario P, Bolchi A, Brenna A, Brun A, Buée M, Cantarel B, Chevalier G, Couloux A, Silva CD, Denoeud F, Duplessis S, Ghignone S, Hilselberger B, Lotti M, Marçais B, Mello A, Miranda M, Pacioni G, Quesneville H, Riccioni C, Ruotolo R, Stocchi V, Tisserant E, Viscomi AR, Zambonelli A, Zampieri E, Henrissat B, Lebrun MH, Paolocci F, Bonfante P, Ottonello S, Wincker P (2010) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464(7291):1033–1038

    Article  CAS  PubMed  Google Scholar 

  • Mauriello G, Marino R, D’Auria M, Cerone G, Rana GL (2004) Determination of volatile organic compounds from truffles via SPME GC– MS. J Chromatogr Sci 42:299–305

    Article  CAS  PubMed  Google Scholar 

  • Menendez JA, Papadimitropoulou A, Vellon L, Lupu R (2006) A genomic explanation connecting “Mediterranean diet”, olive oil and cancer: oleic acid, the main monounsaturated fatty acid of olive oil, induces formation of inhibitory “PEA3 transcription factor-PEA3 DNA binding site” complexes at the Her-2/neu (erbB-2). Eur J Cancer 42:2425–2432

    Article  CAS  PubMed  Google Scholar 

  • Menotta M, Amicucci A, Sisti D, Gioacchini AM, Stocchi V (2004) Differential gene expression during pre-symbiotic interaction between Tuber borchii Vittad. and Tilia Americana L. Curr Genet 46:158–165

    Article  CAS  PubMed  Google Scholar 

  • Moradali MF, Mostafavi H, Ghods S, Hedjaroude GA (2007) Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). Int Immunopharmacol 7:701–724

    Article  CAS  PubMed  Google Scholar 

  • Murat C, Díez J, Luis P, Delaruelle C, Dupré C, Chevalier G, Bonfante P, Martin F (2004) Polymorphism at the ribosomal DNA ITS and ITS relation to postglacial re-colonization routes of the Périgord truffle Tuber melanosporum. New Phytol 164:401–411

    Article  CAS  PubMed  Google Scholar 

  • Nadim M, Deshaware S, Saidi N, Abd-Elhakeem MA, Ojamo H, Shamekh S (2015) Extracellular enzymatic activity of Tuber maculatum and Tuber aestivum mycelia. Adv Appl Microbiol 5(7):523–530

    Article  Google Scholar 

  • Owaid MN, Muslim RF, Hamad HA (2018) Mycosynthesis of silver nanoparticles using Terminia sp. desert truffle, Pezizaceae, and their antibacterial activity. Jordan J Biol Sci 11:401–405

    CAS  Google Scholar 

  • Rizzello R, Zampieri E, Vizzini A, Autino A, Cresti M, Bonfante P, Mello A (2012) Authentication of prized white and black truffles in processed products using quantitative real-time PCR. Food Res Int 48(2):792–797

    Article  CAS  Google Scholar 

  • Rubini A, Topini F, Riccioni C, Paolocci F, Arcioni S (2004) Isolation and characterization of polymorphic microsatellite loci in white truffle (Tuber magnatum). Mol Ecol Notes 4:116–118

    Article  CAS  Google Scholar 

  • Rubini A, Belfiori B, Riccioni C, Paolocci F (2012) Genomics of tuber melanosporum: new knowledge concerning reproductive biology, Symbiosis, and aroma production. In: Edible ectomycorrhizal mushrooms. Springer, Berlin, Heidelberg, pp 57–72

    Chapter  Google Scholar 

  • Rubini A, Riccioni C, Belfiori B, Paolocci F (2014) Impact of the competition between mating types on the cultivation of tuber melanosporum: Romeo and Juliet and the matter of space and time. Mycorrhiza 24(Suppl 1):S19–S27

    Article  PubMed  Google Scholar 

  • Schnitzler BE, Thebo PL, Mattsson JG, Tomley FM, Shirley MW (1998) Development of a diagnostic PCR assay for the detection and discrimination of four pathogenic Eimeria species of the chicken. Avian Pathol 27:490–497

    Article  CAS  PubMed  Google Scholar 

  • Sies H, Stahl W (1995) Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. Am J Clin Nutr 62(6 Suppl):1315S–1321S

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Kundu D, Das M, Banerjee R (2019) Enzymatic processing of juice from fruits/vegetables: an emerging trend and cutting edge research in food biotechnology. In: Enzymes in food biotechnology. Academic Press, New York, pp 419–432

    Chapter  Google Scholar 

  • Splivallo R, Novero M, Bertea CM, Bossi S, Bonfante P (2007) Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol 175:417–424

    Article  CAS  PubMed  Google Scholar 

  • Splivallo R, Ottonello S, Mello A, Karlovsky P (2011) Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytol 189:688–699

    Article  CAS  PubMed  Google Scholar 

  • Stojković D, Reis FS, Ferreira ICFR, Barros L, Glamočlija J, Ćirić A, Nikolić M, Stević T, Giveli A, Soković M (2013) Tirmania pinoyi: chemical composition, in vitro antioxidant and antibacterial activities and in situ control of Staphylococcus aureus in chicken soup. Food Res Int 53:56–62

    Google Scholar 

  • Suz LM, Martin MP, Oliach D, Fischer CR, Colinas C (2008) Mycelial abundance and other factors related to truffle productivity in Tuber melanosporum-Quercus ilex orchards. FEMS Microbiol Lett 285(1):72–78

    Article  CAS  PubMed  Google Scholar 

  • Talou T, Gaset A, Delmas M, Kulifaj M, Montant C (1990) Dimethyl sulphide: the secret for black truffle hunting by animals? Mycol Res 94(2):277–278

    Article  CAS  Google Scholar 

  • Thomas P, Büntgen U (2019) A risk assessment of Europe’s black truffle sector under predicted climate change. Sci Total Environ 655:27–34

    Article  CAS  PubMed  Google Scholar 

  • Tirillini B, Verdelli G, Paolocci F, Ciccioli P, Frattoni M (2000) The volatile organic compounds from the mycelium of Tuber borchii Vitt. Phytochemistry 55:983–985

    Article  CAS  PubMed  Google Scholar 

  • Trappe JM, Claridge AW, Arora D, Smit WA (2008) Desert truffles of the African Kalahari: ecology, ethnomycology, and taxonomy. Econ Bot 62:521–529

    Article  Google Scholar 

  • Trappe JM, Kovacs GM, Claridge AW (2010) Comparative taxonomy of desert truffles of the Australian outback and the African Kalahari. Mycol Progr 9:131–143

    Article  Google Scholar 

  • Urban A, Neuner-Plattner I, Krisai-Greilhuber I, Haselwandter K (2004) Molecular studies on terricolous microfungi reveal novel anamorphs of two Tuber species. Mycol Res 108:749–758

    Article  CAS  PubMed  Google Scholar 

  • Urbanelli S, Sallicandro P, Vito ED, Bullini L, Palenzona M, Ferrara AM (1998) Identification of Tuber mycorrhizae using multilocus electrophoresis. Mycologia 90(3):389–395

    Article  CAS  Google Scholar 

  • Vahdatzadeh M, Deveau A, Splivallo R (2015) The role of the microbiome of truffles in aroma formation: a meta-analysis approach. Appl Environ Microbiol 81(20):6946–6952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkateshwarlu G, Chandravadana MV, Tewari RP (1999) Volatile flavor components of some edible mushrooms (basidiomycetes). Flavour Fragr J 14:191–194

    Article  CAS  Google Scholar 

  • Wasser S (2003) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60:258–274

    Google Scholar 

  • Wedén C (2004) Black truffles of Sweden. Systematics, population studies, ecology and cultivation of T. aestivum syn. T. uncinatum. PhD thesis. Uppsala University, Sweden

    Google Scholar 

  • Wedén C, Danell E, Camacho FJ, Backlund A (2004) The population of the hypogeous fungus tuber aestivum syn. T. uncinatum on the island of Gotland. Mycorrhiza 14:19–12

    Article  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfland DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, CA, pp 315–322

    Google Scholar 

  • Wnouk S, Kinastowski S, Kaminski E (1983) Synthesis and analysis of 1-octen-3-ol, the main flavor component of mushrooms. Nahrung 27:479–486

    Article  Google Scholar 

  • Woyengo TA, Ramprasath VR, Jones PJH (2009) Anticancer effects of phytosterols. Eur J Clin Nutr 63:813–820

    Article  CAS  PubMed  Google Scholar 

  • Yan X, Wang Y, Sang X, Fan L (2017) Nutritional value, chemical composition and antioxidant activity of three tuber species from China. AMB Express 7:136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zampieri E, Balestrini R, Kohler A, Abbà S, Martin F, Bonfante P (2011) The Perigord black truffle responds to cold temperature with an extensive reprogramming of its transcriptional activity. Fungal Genet Biol 48(6):585–591

    Article  CAS  PubMed  Google Scholar 

  • Zeppa S, Gioacchini AM, Guidi C, Guescini M, Pierleoni R, Zambonelli A, Stocchi V (2004) Determination of specific volatile organic compounds synthesized during tuber borchii fruit body development by solid-phase microextraction and gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 18:199–205

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Jayachandran M, Ganesan K, Xu B (2018) Black truffle aqueous extract attenuates oxidative stress and inflammation in STZ-induced hyperglycemic rats via Nrf2 and NF-κB pathways. Front Pharmacol 9:1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao W, Wang XH, Li HM, Wang SH, Chen T, Yuan ZP, Tang YJ (2014) Isolation and characterization of polysaccharides with the antitumor activity from tuber fruiting bodies and fermentation system. Appl Microbiol Biotechnol 98:1991–2002

    Article  CAS  PubMed  Google Scholar 

  • Zong A, Cao H, Wang F (2012) Anticancer polysaccharides from natural resources: a review of recent research. Carbohydr Polym 90:1395–1410

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rintu Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, M., Pal, A., Banerjee, S., Dey, S., Banerjee, R. (2022). Phylogenomics, Microbiome and Morphological Insights of Truffles: The Tale of a Sensory Stimulating Ectomycorrhizal Filamentous Fungus. In: Sahay, S. (eds) Extremophilic Fungi. Springer, Singapore. https://doi.org/10.1007/978-981-16-4907-3_29

Download citation

Publish with us

Policies and ethics