Skip to main content

Xerophilic Fungi: Physiology, Genetics and Biotechnology

  • Chapter
  • First Online:
Extremophilic Fungi

Abstract

Xerophilic fungi are the distinctive organism which can grow under conditions of reduced water activity. The present work highlights the physiological adaptations of xerophilic fungi which include osmoregulation through membrane modifications, osmosensors-mediated sensing of low water activity (aw) and utilisation of alternate substrates, namely, salt and sugar. We have also covered the three unique strategies, namely combative, stress and ruderal, which is helpful for their survival in unfavourable conditions. In this chapter, we have tried to cover the molecular mechanism along with the genes expression responsible for the adaptation of xerophilic fungi under water stress conditions. Further, this chapter covers the various bioactive compounds produced by xerophilic fungi along with their potential bioactivity. In the last section, we have discussed the various aspects of xerophilic fungi such as enzyme and pigment production, air biofiltration, biodeterioration in museums and libraries, etc. We have also covered the health risks associated with the xerophilic fungi, namely fungal infections, food spoilage and mycotoxin production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K (2012) Assessment of home environments with a fungal index using hydrophilic and xerophilic fungi as biologic sensors. Indoor Air 22:173–185

    Article  CAS  PubMed  Google Scholar 

  • Abe F, Horikoshi K (2001) The biotechnological potential of piezophiles. Trends Biotechnol 19:102–108

    Article  CAS  PubMed  Google Scholar 

  • Agarwal R, Chakrabarti A (2013) Allergic bronchopulmonary aspergillosis in asthma: epidemiological, clinical and therapeutic issues. Future Microbiol 8:1463–1474

    Article  CAS  PubMed  Google Scholar 

  • Al-Sohaibani S, Murugan K, Lakshimi G, Anandraj K (2011) Xerophilic aflatoxigenic black tea fungi and their inhibition by Elettaria cardamomum and Syzygiumaromaticum extracts. Saudi J Biol Sci 18:387–394

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersen MR, Nielsen JB, Klitgaard A, Petersen LM, Zachariasen M, Hansen TJ, Blicher LH, Gotfredsen CH, Larsen TO, Nielsen KF, Mortensen UH (2013) Accurate prediction of secondary metabolite gene clusters in filamentous fungi. Proc Natl Acad Sci U S A 110(1):E99–E107. https://doi.org/10.1073/pnas.1205532110. Epub 2012 Dec 17. PMID: 23248299; PMCID: PMC3538241

    Article  PubMed  Google Scholar 

  • Ashokkumar B, Nagarajan K, Paramasamy G (2001) Optimization of media for β-fructofuranosidase production by Aspergillus niger in submerged and solid state fermentation. Process Biochem 37:331–338

    Article  CAS  Google Scholar 

  • Bashyal BP, Wijeratne EMK, Faeth SH, Gunatilaka AAL (2005) Globosumones a−c, cytotoxic orsellinic acid esters from the sonoran desert endophytic fungus Chaetomium globosum. J Nat Prod 68:724–728

    Article  CAS  PubMed  Google Scholar 

  • Bourdineaud JP, Der Vaart V, Marcel J, Donzeau M, De Sampaïo G, Verrips CT (1998) Pmt1 mannosyl transferase is involved in cell wall incorporation of several proteins in Saccharomyces cerevisiae. Mol Microbiol 27:85–98

    Article  CAS  PubMed  Google Scholar 

  • Bouwman J, Kiewiet J, Lindenbergh A, Van Eunen K, Siderius M, Bakker BM (2011) Metabolic regulation rather than de novo enzyme synthesis dominates the osmo-adaptation of yeast. Yeast 28:43–53

    Article  CAS  PubMed  Google Scholar 

  • Brewer MS (1999) Traditional preservatives—sodium chloride. Encyclopaedia of food microbiology, vol 3. Academic, London

    Google Scholar 

  • Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12:323–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cossins AR, Murray PA, Gracey AY, Logue J, Polley S, Caddick M (2002) The role of desaturases in cold-induced lipid restructuring. Biochem Soc Trans 30:1082–1086

    Article  CAS  PubMed  Google Scholar 

  • Cray JA, Russell JT, Timson D, Singhal RS, Hallsworth JE (2013) A universal measure of chaotropicity and kosmotropicity. Environ Microbiol 15:287–296

    Article  CAS  PubMed  Google Scholar 

  • Du L, Zhu T, Fang Y, Gu Q, Zhu W (2008) Unusual C25 steroid isomers with bicycle [4.4.1]a/b rings from a volcano ash-derived fungus Penicillium citrinum. J Nat Prod 71:1343–1351

    Article  CAS  PubMed  Google Scholar 

  • Ferreira C, van Voorst F, Martins A, Neves L, Oliveira R, Kielland-Brandt MC (2005) A member of the sugar transporter family, Stl1p is the glycerol/H + symporter in Saccharomyces cerevisiae. Mol Biol Cell 16:2068–2076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox EM, Howlett BJ (2008) Secondary metabolism: regulation and role in fungal biology. Curr Opin Microbiol 11:481–487

    Article  CAS  PubMed  Google Scholar 

  • Gallo F, Pasquariello G, Valenti P (2003) Libraries and archives. In: Cultural heritage and aerobiology. Springer, Dordrecht, pp 175–193

    Chapter  Google Scholar 

  • Gbaguidi-Haore H, Roussel S, Reboux G, Dalphin JC, Piarroux R (2009) Multilevel analysis of the impact of environmental factors and agricultural practices on the concentration in hay of microorganisms responsible for farmer's lung disease. Ann Agric Environ Med 16:219–225

    PubMed  Google Scholar 

  • Gostinčar C, Turk M, Gunde-Cimerman N (2009) Environmental impacts on fatty acid composition of fungal membranes. In: Fungi from different environments, pp 278–325

    Chapter  Google Scholar 

  • Gründlinger M, Yasmin S, Lechner BE, Geley S, Schrettl M, Hynes M, Haas H (2013) Fungal siderophore biosynthesis is partially localized in peroxisomes. Mol Microbiol 88:862–875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guarro J, Gugnani HC, Sood N, Batra R, Mayayo E, Gene J, Kakkar S (2008) Subcutaneous phaeohyphomycosis caused by Wallemiasebi in an immunocompetent host. J Clin Microbiol 46:1129–1131

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagiwara D, Mizuno T, Abe K (2009) Characterization of NikA histidine kinase and two response regulators with special reference to osmotic adaptation and asexual development in Aspergillus nidulans. Biosci Biotechnol Biochem 73:1566–1571

    Article  CAS  PubMed  Google Scholar 

  • Hocking AD (1986) Effect of water activity and culture ageon the glycerol accumulation patterns in five fungi. J Gen Microbiol 132:269–275

    CAS  Google Scholar 

  • Hocking AD (2006) Aspergillus and related teleomorphs. In: Food spoilage microorganisms, pp 451–487

    Chapter  Google Scholar 

  • Hocking AD (2014) Spoilage problems: problems caused by fungi. In: Batt CA, Tortorello ML (eds) Encyclopedia of food microbiology. Academic Press, Oxford, pp 471–481

    Chapter  Google Scholar 

  • Inglis DO, Binkley J, Skrzypek MS, Arnaud MB, Cerqueira GC, Shah P, Sherlock G (2013) Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. nigerand A. oryzae. BMC Microbiol 13:1–23

    Article  CAS  Google Scholar 

  • Ismail MA, Taligoola HK, Nakamya R (2012) Xerophiles and other fungi associated with cereal baby foods locally produced in Uganda. Acta Mycology 47:75–89

    Google Scholar 

  • Itabashi T, Matsuishi N, Hosoe T, Toyazaki N, Udagawa S, Imai T, Adachi M, Kawai K (2006) Two new dioxopiperazine derivatives, arestrictins a and b, isolated from Aspergillus restrictus and Aspergillus penicilloides. Chem Pharm Bull 54:1639

    Article  CAS  Google Scholar 

  • Jančič S, Frisvad JC, Kocev D, Gostinčar C, Džeroski S, Gunde-Cimerman N (2016) Production of secondary metabolites in extreme environments: food-and airborne Wallemia spp. produce toxic metabolites at hypersaline conditions. PLoS One 11:12

    Article  CAS  Google Scholar 

  • Janda K, Ulfig K, Markowska-Szczupak A (2009) Further studies of extracellular enzyme profiles of xerophilic fungi isolates from dried medicinal plants. Polish J Environ Stud 18:627–633

    CAS  Google Scholar 

  • Kaarakainen P, Rintala H, Vepsäläinen A, Hyvärinen A, Nevalainen A, Meklin T (2009) Microbial content of house dust samples determined with qPCR. Sci Total Environ 407:4673–4680

    Article  CAS  PubMed  Google Scholar 

  • Kamarudin NA, Zakaria L (2018) Characterization of two xerophilic Aspergillus spp. from peanuts (Arachis hypogaea). Malaysian J Microbiol 14:41–48

    CAS  Google Scholar 

  • Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolfe KH, Federova ND (2010) SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol 47:736–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leong SL, Pettersson OV, Rice T, Hocking AD, Schnürer J (2011) The extreme xerophilic mould Xeromycesbisporus– growth and competition at various water activities. Int J Food Microbiol 145:57–63

    Article  PubMed  Google Scholar 

  • Leong SLL, Lantz H, Pettersson OV, Frisvad JC, Thrane U, Heipieper HJ, Schnürer J (2015) Genome and physiology of the ascomycete filamentous fungus Xeromycesbisporus, the most xerophilic organism isolated to date. Environ Microbiol 17:496–513

    Article  CAS  PubMed  Google Scholar 

  • Magan N, Aldred D, Sanchis V (2004) Role of spoilage fungi in seed deterioration. In: Fungal biotechnology in agricultural, food and environmental applications, pp 311–123

    Google Scholar 

  • Mager WH, Varela JCS (1993) Osmo-stress response of the yeast saccharomyces. Mol Microbiol 10:253–258

    Article  CAS  PubMed  Google Scholar 

  • Manna M, Kim KD (2017) Control strategies for deleterious grain fungi and mycotoxin production from pre-harvest to post-harvest stages of cereal crops: a review. Life Sci Nat Resour Res 25:13–27

    Google Scholar 

  • Mendes G, Gonçalves VN, Souza-Fagundes EM, Kohlhoff M, Rosa CA, Zani CL, Cota BB, Rosa LH, Johann S (2016) Antifungal activity of extracts from Atacama Desert fungi against Paracoccidioides brasiliensis and identification of Aspergillus felis as a promising source of natural bioactive compounds. Mem Inst Oswaldo Cruz 111:209–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Méndez A, Pérez C, Montañéz JC, Martínez G, Aguilar CN (2011) Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature. J Zhejiang Univ Sci B 12:961–968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Micheluz A, Manente S, Tigini V, Prigione V, Pinzari F, Ravagnan G, Varese GC (2015) The extreme environment of a library: Xerophilic fungi inhabiting indoor niches. Interna Biodete Biodegra 99:1–7

    Article  Google Scholar 

  • Navarre C, Goffeau A (2000) Membrane hyperpolarization and salt sensitivity induced by deletion of PMP3, a highly conserved small protein of yeast plasma membrane. EMBO J 19:2515–2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolaus B, Kambourova M, Oner ET (2010) Exopolysaccharides from extremophiles: from fundamentals to biotechnology. Environ Technol 31:1145–1158

    Article  CAS  PubMed  Google Scholar 

  • O’Quin JB, Bourassa L, Zhang D, Shockey JM, Gidda SK, Fosnot S (2010) Temperature-sensitive post-translational regulation of plant omega-3 fatty-acid desaturases is mediated by the endoplasmic reticulum associated degradation pathway. J Biol Chem 285:21781–21796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orlean P (1990) Dolichol phosphate mannose synthase is required in vivo for glycosyl phosphatidylinositol membrane anchoring, O mannosylation, and N glycosylation of protein in Saccharomyces cerevisiae. Mol Cell Biol 10:5796–5805

    CAS  PubMed  PubMed Central  Google Scholar 

  • Påhlman AK, Granath K, Ansell R, Hohmann S, Adler L (2001) The yeast glycerol 3-phosphatases Gpp1p and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress. J Biol Chem 276:3555–3563

    Article  PubMed  Google Scholar 

  • Peraica M (2016) Mycotoxicoses. In: Environmental mycology in public health. Academic Press, pp 45–49

    Chapter  Google Scholar 

  • Pettersson OV, Leong SL, Lantz H, Rice T, Dijksterhuis J, Houbraken J (2011) Phylogeny and intraspecific variation of the extreme xerophile, Xeromycesbisporus. Fungal Biol 115:1100–1111

    Article  PubMed  Google Scholar 

  • Pinzari F, Montanari M (2011) Mould growth on library materials stored in compactus-type shelving units. In: Sick building syndrome. Springer, Berlin, Heidelberg, pp 193–206

    Chapter  Google Scholar 

  • Pitt JI, Christian JHB (1968) Water relations of xerophilic fungi isolated from prunes. Appl Microbiol 16:853–1858

    Article  Google Scholar 

  • Pitt JI, Hocking AD (2009) Fungi and food spoilage. Springer, New York

    Book  Google Scholar 

  • Prenafeta-Boldú FX, De Hoog GS, Summerbell RC (2018) Fungal communities in hydrocarbon degradation. In: Microbial communities utilizing hydrocarbons and lipids: members, metagenomics and ecophysiology, handbook of hydrocarbon and lipid microbiology. Springer, Cham, pp 1–36

    Google Scholar 

  • Rico-Munoz E, Samson RA, Houbraken J (2019) Mould spoilage of foods and beverages: using the right methodology. Food Microbiol 81:51–62

    Article  PubMed  Google Scholar 

  • Rothschild L, Mancinelli R (2001) Life in extreme environments. Nature 409:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Su-lin LL, Pettersson OV, Rice T, Hocking AD, Schnürer J (2011) The extreme xerophilic mould Xeromycesbisporus—growth and competition at various water activities. Int J Food Microbiol 145:57–63

    Article  Google Scholar 

  • Sutterlin C, Escribano M, Gerold P, Maeda Y, Mazon M, Kinoshita T (1998) Saccharomyces cerevisiae GPI10, the functional homologue of human PIG-B, is required for glycosylphosphatidylinositol-anchor synthesis. Biochem J 332:153–159

    Google Scholar 

  • Tanaka K, Tatebayashi K, Nishimura A, Yamamoto K, Yang HY, Saito H (2014) Yeast osmosensors hkr1 and msb2 activate the hog1 MAPK cascade by different mechanisms. Sci Signal 7:21

    Google Scholar 

  • Tatebayashi K, Tanaka K, Yang HY, Yamamoto K, Matsushita Y, Tomida T (2007) Transmembrane mucins Hkr1 and Msb2 are putative osmosensors in the SHO1 branch of yeast HOG pathway. EMBO J 26:3521–3533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trovao J, Mesquita N, Paiva DS, Paiva de Carvalho H, Avelar L, Portugal A (2013) Can arthropods act as vectors of fungal dispersion in heritage collections? A case study on the archive of the University of Coimbra, Portugal. Int Biodeterior Biodegradation 79:49–55

    Article  Google Scholar 

  • Trüper HG, Galinski EA (1990) Biosynthesis and fate of compatible solutes in extremely halophilic phototrophic bacteria. FEMS Microbiol Rev 75:181–186

    Article  Google Scholar 

  • Van den Burg B (2003) Xtremophiles as a source for novel enzymes. Curr Opin Microbiol 6:213–218

    Article  PubMed  CAS  Google Scholar 

  • Veana F, Martínez-Hernández JL, Aguilar CN, Rodríguez-Herrera R, Michelena G (2014) Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using aspergillus Niger GH1. Braz J Microbiol 45:373–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visagie CM, Yilmaz N, Renaud JB, Sumarah MW, Hubka V, Frisvad JC, Chen AJ, Meijer M, Seifert KA (2017) A survey of xerophilic Aspergillus from indoor environment, including descriptions of two new section Aspergillus species producing eurotium-like sexual states. Myco Keys 19:1–30

    Article  Google Scholar 

  • Warringer J, Hult M, Regot S, Posas F, Sunnerhagen P (2010) The HOG pathway dictates the short-term translational response after hyperosmotic shock. Mol Biol Cell 21:3080–3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Keller NP (2005) Regulation of secondary metabolism in fungi. Annu Rev Phytopathol 43:437–458

    Article  CAS  PubMed  Google Scholar 

  • Zajc J, Gunde-Cimerman N (2018) The genus Wallemia—from contamination of food to health threat. Microorganisms 6:46

    Article  PubMed Central  Google Scholar 

  • Zak JC, Wildman HG (2004) Fungi in stressful environments. In: Biodiversity of fungi: inventory and monitoring methods. Academic Press, Burlington, pp 303–315

    Chapter  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the authorities of Mohanlal Sukhadia University, Udaipur, for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitish Rai .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarkar, S., Singh, N.A., Rai, N. (2022). Xerophilic Fungi: Physiology, Genetics and Biotechnology. In: Sahay, S. (eds) Extremophilic Fungi. Springer, Singapore. https://doi.org/10.1007/978-981-16-4907-3_13

Download citation

Publish with us

Policies and ethics