Skip to main content

Mathematical Modeling and Experimental Verification of the Proneural Wave

  • Conference paper
  • First Online:
Methods of Mathematical Oncology (MMDS 2020)

Abstract

Spatio-temporal pattern formation during development is regulated by interactions of multiple signaling pathways. To understand complex signaling networks, we used the Drosophila visual system as a model because neural differentiation progresses in a spatiotemporally ordered manner. During the development of the visual system, a wave of differentiation, called the proneural wave, sweeps across the brain surface and determines the timing of differentiation of neuroepithelial cells into neuroblasts, which are neural stem cells in Drosophila. Propagation of the proneural wave is regulated through a combination of signaling pathways, including the Notch, EGF, and JAK/STAT. We combined mathematical modeling with in vivo experiments, the results of which revealed that Notch-mediated lateral inhibition and EGF-mediated reaction diffusion determine the speed of progression of the proneural wave. We reported that JAK/STAT signaling has a noise-canceling function to assure robust neuroblast differentiation. Furthermore, we introduced a continuation method from spatially discretized models while conserving the cell size and lattice. This mathematical method enables us to introduce information from spatially discrete to spatially continuous models, rendering it suitable for applications in both experimental and mathematical analyses. Our interdisciplinary studies have revealed new functions of signaling pathways that have previously been difficult to address by conventional biological experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yasugi, T., Nishimura, T.: Temporal regulation of the generation of neuronal diversity in Drosophila. Dev. Growth Differ. 58(1), 73–87 (2016)

    Article  Google Scholar 

  2. Sato, M., Suzuki, T., Nakai, Y.: Waves of differentiation in the fly visual system. Dev. Biol. 380(1), 1–11 (2013)

    Article  Google Scholar 

  3. Sato, M., Yasugi, T., Trush, O.: Temporal patterning of neurogenesis and neural wiring in the fly visual system. Neurosci. Res. 138, 49–58 (2019)

    Article  Google Scholar 

  4. Nassif, C., Noveen, A., Hartenstein, V.: Early development of the Drosophila brain: III. The pattern of neuropile founder tracts during the larval period. J. Comput. Neurol. 455(4), 417–434 (2003)

    Google Scholar 

  5. Egger, B., Boone, J.Q., Stevens, N.R., Brand, A.H., Doe, C.Q.: Regulation of spindle orientation and neural stem cell fate in the Drosophila optic lobe. Neural Dev. 2, 1 (2007)

    Article  Google Scholar 

  6. Yasugi, T., Umetsu, D., Murakami, S., Sato, M., Tabata, T.: Drosophila optic lobe neuroblasts triggered by a wave of proneural gene expression that is negatively regulated by JAK/STAT. Development 135(8), 1471–1480 (2008)

    Article  Google Scholar 

  7. Kawamori, H., Tai, M., Sato, M., Yasugi, T., Tabata, T.: Fat/Hippo pathway regulates the progress of neural differentiation signaling in the Drosophila optic lobe. Dev. Growth Differ. 53(5), 653–667 (2011)

    Article  Google Scholar 

  8. Reddy, B.V., Rauskolb, C., Irvine, K.D.: Influence of fat-hippo and notch signaling on the proliferation and differentiation of Drosophila optic neuroepithelia. Development 137(14), 2397–2408 (2010)

    Article  Google Scholar 

  9. Yasugi, T., Sugie, A., Umetsu, D., Tabata, T.: Coordinated sequential action of EGFR and Notch signaling pathways regulates proneural wave progression in the Drosophila optic lobe. Development 137(19), 3193–3203 (2010)

    Article  Google Scholar 

  10. Weng, M., Haenfler, J.M., Lee, C.Y.: Changes in Notch signaling coordinates maintenance and differentiation of the Drosophila larval optic lobe neuroepithelia. Dev. Neurobiol. 72(11), 1376–1390 (2012)

    Article  Google Scholar 

  11. Wang, W., Liu, W., Wang, Y., Zhou, L., Tang, X., Luo, H.: Notch signaling regulates neuroepithelial stem cell maintenance and neuroblast formation in Drosophila optic lobe development. Dev. Biol. 350(2), 414–428 (2011)

    Article  Google Scholar 

  12. Orihara-Ono, M., Toriya, M., Nakao, K., Okano, H.: Downregulation of Notch mediates the seamless transition of individual Drosophila neuroepithelial progenitors into optic medullar neuroblasts during prolonged G1. Dev. Biol. 351(1), 163–175 (2011)

    Article  Google Scholar 

  13. Ngo, K.T., et al.: Concomitant requirement for Notch and JAK/STAT signaling during neuro-epithelial differentiation in the Drosophila optic lobe. Dev. Biol. 346(2), 284–295 (2010)

    Article  Google Scholar 

  14. Wang, W., Li, Y., Zhou, L., Yue, H., Luo, H.: Role of JAK/STAT signaling in neuroepithelial stem cell maintenance and proliferation in the Drosophila optic lobe. Biochem. Biophys. Res. Commun. 410(4), 714–720 (2011)

    Article  Google Scholar 

  15. Richter, C., Oktaba, K., Steinmann, J., Muller, J., Knoblich, J.A.: The tumour suppressor L(3)mbt inhibits neuroepithelial proliferation and acts on insulator elements. Nat. Cell Biol. 13(9), 1029–1039 (2011)

    Article  Google Scholar 

  16. Sato, M., Yasugi, T., Minami, Y., Miura, T., Nagayama, M.: Notch-mediated lateral inhibition regulates proneural wave propagation when combined with EGF-mediated reaction diffusion. Proc. Natl. Acad. Sci. U.S.A. 113(35), E5153–5162 (2016)

    Article  Google Scholar 

  17. Simpson, P.: Lateral inhibition and the development of the sensory bristles of the adult peripheral nervous system of Drosophila. Development 109(3), 509–519 (1990)

    Article  Google Scholar 

  18. Artavanis-Tsakonas, S., Rand, M.D., Lake, R.J.: Notch signaling: cell fate control and signal integration in development. Science 284(5415), 770–776 (1999)

    Article  Google Scholar 

  19. Miller, A.C., Lyons, E.L., Herman, T.G.: cis-Inhibition of Notch by endogenous Delta biases the outcome of lateral inhibition. Curr. Biol. 19(16), 1378–1383 (2009)

    Article  Google Scholar 

  20. del Alamo, D., Schweisguth, F.: Notch signalling: receptor cis-inhibition to achieve directionality. Curr. Biol. 19(16), R683–684 (2009)

    Article  Google Scholar 

  21. Sprinzak, D., et al.: Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature 465(7294), 86–90 (2010)

    Article  Google Scholar 

  22. Wiley, H.S., Shvartsman, S.Y., Lauffenburger, D.A.: Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell Biol. 13(1), 43–50 (2003)

    Article  Google Scholar 

  23. Bolos, V., Grego-Bessa, J., de la Pompa, J.L.: Notch signaling in development and cancer. Endocr. Rev. 28(3), 339–363 (2007)

    Article  Google Scholar 

  24. Liao, B.K., Oates, A.C.: Delta-Notch signalling in segmentation. Arthropod Struct. Dev. 46(3), 429–447 (2017)

    Article  Google Scholar 

  25. Barad, O., Hornstein, E., Barkai, N.: Robust selection of sensory organ precursors by the Notch-Delta pathway. Curr. Opin. Cell Biol. 23(6), 663–667 (2011)

    Article  Google Scholar 

  26. Wang, H., Chen, X., He, T., Zhou, Y., Luo, H.: Evidence for tissue-specific JAK/STAT target genes in Drosophila optic lobe development. Genetics 195(4), 1291–1306 (2013)

    Article  Google Scholar 

  27. Tanaka, Y., Yasugi, T., Nagayama, M., Sato, M., Ei, S.I.: JAK/STAT guarantees robust neural stem cell differentiation by shutting off biological noise. Sci. Rep. 8(1), 12484 (2018)

    Article  Google Scholar 

  28. Arias, A.M., Hayward, P.: Filtering transcriptional noise during development: concepts and mechanisms. Nat. Rev. Genet. 7(1), 34–44 (2006)

    Article  Google Scholar 

  29. Horikawa, K., Ishimatsu, K., Yoshimoto, E., Kondo, S., Takeda, H.: Noise-resistant and synchronized oscillation of the segmentation clock. Nature 441(7094), 719–723 (2006)

    Article  Google Scholar 

  30. Naoki, H., Akiyama, R., Sari, D.W.K., Ishii, S., Bessho, Y., Matsui, T.: Noise-resistant developmental reproducibility in vertebrate somite formation. PLoS Comput. Biol. 15(2), e1006579 (2019)

    Google Scholar 

  31. Ei, S., Ishii, H., Sato, M., Tanaka, Y., Wang, M., Yasugi, T.: A continuation method for spatially discretized models with nonlocal interactions conserving size and shape of cells and lattices. J. Math. Biol. 81, 981-1028 (2020)

    Google Scholar 

  32. Ayukawa, T., et al.: Dachsous-dependent asymmetric localization of spiny-legs determines planar cell polarity orientation in Drosophila. Cell Rep. 8, 610–621 (2014)

    Article  Google Scholar 

  33. Doumic, M., Goudon, T., Lepoutre, T.: Scaling limit of a discrete prion dynamics model. Commun. Math. Sci. 7, 839–865 (2009)

    Article  MathSciNet  Google Scholar 

  34. Laurençot, P., Mischler, S.: From the discrete to the continuous coagulation-fragmentation equations. Proc. Roy. Soc. Edinb. Sect. A. 132(5), 1219–1248 (2002)

    Article  MathSciNet  Google Scholar 

  35. Bates, P.W., Fife, P.C., Ren, X., Wang, X.: Traveling waves in a convolution model for phase transitions. Arch. Rational Mech. Anal. 138, 105–136 (1997)

    Article  MathSciNet  Google Scholar 

  36. Coville, J., Dupaigne, L.: On a non-local equation arising in population dynamics. Proc. Roy. Soc. Edinb. Sect. A 137, 727–755 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Makoto Sato and Hiroshi Ishii for their critical reading of the manuscript. This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas (JP19H04956 and JP20H05030 to T.Y.), Grant-in-Aid for Scientific Research (C) (JP19K06674 to T.Y.), and Grant-in-Aid for Early-Career Scientists (JP20K14364 to Y.T.) from MEXT, Takeda Science Foundation (to T.Y.), and the Uehara Memorial Foundation (to T.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuo Yasugi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tanaka, Y., Yasugi, T. (2021). Mathematical Modeling and Experimental Verification of the Proneural Wave. In: Suzuki, T., Poignard, C., Chaplain, M., Quaranta, V. (eds) Methods of Mathematical Oncology. MMDS 2020. Springer Proceedings in Mathematics & Statistics, vol 370. Springer, Singapore. https://doi.org/10.1007/978-981-16-4866-3_3

Download citation

Publish with us

Policies and ethics