Skip to main content

Mathematical Modeling of Tumor Malignancy in Bone Microenvironment

  • Conference paper
  • First Online:
Methods of Mathematical Oncology (MMDS 2020)

Abstract

We construct a multi-scaled mathematical model of tumor malignancy in bone microenvironment including tumor cells, osteoblasts, and ostoclasts underlined by NF-\(\kappa \)B family, RANKL, RNK, and OPG molecules. Pathways causing change of the amounts of osteoblasts, osteoclast, and cancer cells are analyzed via numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pittenger, M.F., et al.: Multilineage potential of adult human mesenchymal stem cells. Science 284(5411), 143–7 (1999)

    Article  Google Scholar 

  2. Polak, J.M., Bishop, A.E.: Stem cells and tissue engineering: past, present, and future. Ann. N. Y. Acad. Sci. 1068, 352–66 (2006)

    Article  Google Scholar 

  3. Blair, H.C., Teitelbaum, S.L., Ghiselli, R., Gluck, S.: Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 245(4920), 855–7 (1989)

    Article  Google Scholar 

  4. Wiktor-Jedrzejczak, W., Bartocci, A., Ferrante, A.W., Jr., Ahmed-Ansari, A., Sell, K.W., Pollard, J.W., Stanley, E.R.: Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc. Natl. Acad. Sci. U S A. 87(12), 4828–32 (1990)

    Article  Google Scholar 

  5. Lacey, D.L., et al.: Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2), 165–76 (1998)

    Article  Google Scholar 

  6. Wang, Y., et al.: Transforming growth factor-\(\beta \) regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene 30(12), 1470–80 (2011)

    Article  Google Scholar 

  7. Mundy, G.R.: Mechanisms of bone metastasis. Cancer 80(8 Suppl), 1546–56 (1997)

    Article  Google Scholar 

  8. Mundy, G.R.: Metastasis to bone: causes, consequences and therapeutic opportunities. Nat. Rev. Cancer 2(8), 584–93 (2002)

    Article  Google Scholar 

  9. Lynch, C.C., et al.: MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell 7(5), 485–96 (2005)

    Google Scholar 

  10. Sato, S., et al.: Transforming growth factor beta derived from bone matrix promotes cell proliferation of prostate cancer and osteoclast activation-associated osteolysis in the bone microenvironment. Cancer Sci. 99(2), 316–23 (2008)

    Article  Google Scholar 

  11. Hung, S.P., Yang, M.H., Tseng, K.F., Lee, O.K.: Hypoxia-induced secretion of TGF-\(\beta \)1 in mesenchymal stem cell promotes breast cancer cell progression. Cell Transplant. 22(10), 1869–82 (2013)

    Article  Google Scholar 

  12. Gao, P., et al.: Functional effects of TGF-\(\beta \)1 on mesenchymal stem cell mobilization in cockroach allergen-induced asthma. J. Immunol. 192(10), 4560–4570 (2014)

    Article  Google Scholar 

  13. Patel, S.A., Meyer, J.R., Greco, S.J., Corcoran, K.E., Bryan, M., Rameshwar, P.: Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-beta. J. Immunol. 184(10), 5885–94 (2010)

    Article  Google Scholar 

  14. Futakuchi, M., et al.: Transforming growth factor-beta signaling at the tumor-bone interface promotes mammary tumor growth and osteoclast activation. Cancer Sci. 100(1), 71–81 (2009)

    Article  Google Scholar 

  15. Futakuchi, M., Lami, K., Tachibana, Y., Yamamoto, Y., Furukawa, M., Fukuoka, J.: The Effects of TGF-\(\beta \) Signaling on Cancer Cells and Cancer Stem Cells in the Bone Microenvironment. Int. J. Mol. Sci. 20(20), 5117 (2019)

    Google Scholar 

  16. Garzón-Alvarado, D.A.: A mathematical model for describing the metastasis of cancer in bone tissue. Comput. Methods Biomech. Biomed. Eng. 15(4), 333–46 (2012)

    Article  MathSciNet  Google Scholar 

  17. Munoz, A.I., Tello, J.I.: On a mathematical model of bone marrow metastatic niche. Math. Biosci. Eng. 14(1), 289–304 (2017)

    Article  MathSciNet  Google Scholar 

  18. Ryser, M.D., Qu, Y., Komarova, S.V.: Osteoprotegerin in bone metastases: mathematical solution to the puzzle. PLoS Comput. Biol. 8(10), e1002703 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The first and the third authors are supported by JSPS core-to-core research program and Kakenhi 16H06576.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hatanaka, N., Futakuchi, M., Suzuki, T. (2021). Mathematical Modeling of Tumor Malignancy in Bone Microenvironment. In: Suzuki, T., Poignard, C., Chaplain, M., Quaranta, V. (eds) Methods of Mathematical Oncology. MMDS 2020. Springer Proceedings in Mathematics & Statistics, vol 370. Springer, Singapore. https://doi.org/10.1007/978-981-16-4866-3_16

Download citation

Publish with us

Policies and ethics