Skip to main content

A Review of Motion Planning Algorithms for Robotic Arm Systems

  • Conference paper
  • First Online:
RiTA 2020

Abstract

Motion planning plays a vital role in the field of robotics. This paper discusses the latest advancements in the research and development of various algorithms and approaches in motion planning in the past five years, with a strong focus on robotic arm systems. Sampling-based motion planning algorithms are prevailing and well-established methods. More effective algorithms such as optimization-based, Probabilistic Movement Primitives (ProMPs)-based and physics-based methods are feasible research directions to explore to improve the effectiveness. The evaluation benchmarking of the algorithm is a worthy research direction. The model-based methods can improve the efficiency of the task, but it has less ability to deal with accidents. In contrast, the model-freed methods can solve this problem, but it takes a long time to compute. This paper also provides an insight into robotic manipulation of rigid and non-rigid (deformable) objects. Based on the study, some challenges and future research trends are summarized, and some algorithms and approaches are suggested for efficient use of the robotic arms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albu Schaffer, A., Haddadin, S., Ott, C., et al.: The DLR lightweight robot: design and control concepts for robots in human environments. Ind. Robot. 34(5), 376–385 (2007)

    Article  Google Scholar 

  2. UNIVERSAL ROBOTS. Collaborative robots -ur3-robot, ur5-robot and ur10-robot [Z] (2019). https://www.universal-robots.cn

  3. Franka Emika GmbH. Collaborative robots - Franka Emika [Z] (2019). https://www.franka.de

  4. Salzman, O., Halperin, D.: Asymptotically near-optimal RRT for fast, high-quality motion planning. IEEE Trans. Rob. 32(3), 473–483 (2016). https://doi.org/10.1109/TRO.2016.2539377

    Article  Google Scholar 

  5. Shyam, R.B., Lightbody, P., Das, G., Liu, P., Gomez-Gonzalez, S., Neumann, G.: Improving local trajectory optimisation using probabilistic movement primitives. IEEE/RSJ (2019)

    Google Scholar 

  6. Dong, W., Qi, X., Chen, Z., Song, C., Yang, X.: An indoor path planning and motion planning method based on POMDP. In: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, pp. 1564–1570 (2017). https://doi.org/10.1109/ROBIO.2017.8324640.

  7. Muhayyuddin, Moll, M., Kavraki, L., Rosell, J.: Randomized physics-based motion planning for grasping in cluttered and uncertain environments. IEEE Robot. Autom. Lett. 3(2), 712–719 (2018). https://doi.org/10.1109/LRA.2017.2783445.

  8. Chi, W., Wang, C., Wang, J., Meng, M.Q.: Risk-DTRRT-based optimal motion planning algorithm for mobile robots. IEEE Trans. Autom. Sci. Eng. 16(3), 1271–1288 (2019). https://doi.org/10.1109/TASE.2018.2877963

    Article  Google Scholar 

  9. Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: a survey. Int. J. Robot. Res. 32(11), 1238–1274 (2013)

    Article  Google Scholar 

  10. Jing, W., Polden, J., Tao, P.Y., Goh, C.F., Lin, W., Shimada, K.: Model-based coverage motion planning for industrial 3D shape inspection applications. In: 2017 13th IEEE Conference on Automation Science and Engineering (CASE), Xi’an, pp. 1293–1300 (2017). https://doi.org/10.1109/COASE.2017.8256278

  11. Diankov, R., Kuffner, J.: OpenRAVE: a planning architecture for autonomous robotics. Robotics (2008). CMU-RI-TR-08-34

    Google Scholar 

  12. Quigley, M., Conley, K., Gerkey, B., et al.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, no. 3.2, p. 5 (2009)

    Google Scholar 

  13. MoveIt Motion Planning Framework, Moveit.ros.org. https://moveit.ros.org/. Accessed 26 June 2020

  14. Kuffner, J.J., LaValle, S.M.: RRT-connect: an efficient approach to single-query path planning. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), San Francisco, CA, USA, pp. 995–1001 (2000). https://doi.org/10.1109/ROBOT.2000.844730.

  15. Sucan, I.A., Moll, M., Kavraki, L.E.: The open motion planning library. IEEE Robot. Autom. Mag. 19(4), 72–82 (2012). https://doi.org/10.1109/MRA.2012.2205651

    Article  Google Scholar 

  16. Liu, P., Yu, H., Cang, S.: Modelling and analysis of dynamic frictional interactions of vibro-driven capsule systems with viscoelastic property. Eur. J. Mech.-A/Solids 74, 16–25 (2019)

    Article  MathSciNet  Google Scholar 

  17. Liu, P., Neumann, G., Fu, Q., Pearson, S., Yu, H.: Energy-efficient design and control of a vibro-driven robot. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1464–1469. IEEE, October 2018

    Google Scholar 

  18. Liu, P., Huda, M.N., Tang, Z., Sun, L.: A self-propelled robotic system with a visco-elastic joint: dynamics and motion analysis. Eng. Comput. 36(2), 655–669 (2019). https://doi.org/10.1007/s00366-019-00722-3

    Article  Google Scholar 

  19. Huda, M.N., Liu, P., Saha, C., Yu, H.: Modelling and motion analysis of a pill-sized hybrid capsule robot. J. Intell. Rob. Syst. 100(3–4), 753–764 (2020). https://doi.org/10.1007/s10846-020-01167-3

    Article  Google Scholar 

  20. Liu, P., Yu, H., Cang, S.: Optimized adaptive tracking control for an underactuated vibro-driven capsule system. Nonlinear Dyn. 94(3), 1803–1817 (2018). https://doi.org/10.1007/s11071-018-4458-9

    Article  Google Scholar 

  21. Abouaïssa, H., Chouraqui, S.: On the control of robot manipulator: a model-free approach. J. Comput. Sci. 31, 6–16 (2019)

    Article  MathSciNet  Google Scholar 

  22. Liu, P., Yu, H., Cang, S.: Adaptive neural network tracking control for underactuated systems with matched and mismatched disturbances. Nonlinear Dyn. 98(2), 1447–1464 (2019). https://doi.org/10.1007/s11071-019-05170-8

    Article  Google Scholar 

  23. Tang, Z., Yu, H., Lu, C., Liu, P., Jin, X.: Single-trial classification of different movements on one arm based on ERD/ERS and corticomuscular coherence. IEEE Access 7, 128185–128197 (2019)

    Article  Google Scholar 

  24. Sun, L., Zhao, C., Yan, Z., Liu, P., Duckett, T., Stolkin, R.: A novel weakly-supervised approach for RGB-D-based nuclear waste object detection. IEEE Sens. J. 19(9), 3487–3500 (2018)

    Article  Google Scholar 

  25. Drimus, A., Kootstra, G., Bilberg, A., Kragic, D.: Classification of rigid and deformable objects using a novel tactile sensor. In: 2011 15th International Conference on Advanced Robotics (ICAR), Tallinn, pp. 427–434 (2011). https://doi.org/10.1109/ICAR.2011.6088622

  26. Lawhorn, R., Susanibar, S., Lu, L., Wang, C.: Polymorphic robot learning for dynamic and contact-rich handling of soft-rigid objects. In: 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Munich, pp. 596–601 (2017). https://doi.org/10.1109/AIM.2017.8014082

  27. Spiers, A.J., Liarokapis, M.V., Calli, B., Dollar, A.M.: Single-grasp object classification and feature extraction with simple robot hands and tactile sensors. IEEE Trans. Haptics 9(2), 207–220 (2016). https://doi.org/10.1109/TOH.2016.2521378

    Article  Google Scholar 

  28. Liu, P., Huda, M.N., Sun, L., Yu, H.: A survey on underactuated robotic systems: bio-inspiration, trajectory planning and control. Mechatronics 72, 102443 (2020)

    Article  Google Scholar 

  29. Navarro-Alarcon, D., et al.: Automatic 3-D manipulation of soft objects by robotic arms with an adaptive deformation model. IEEE Trans. Rob. 32(2), 429–441 (2016). https://doi.org/10.1109/TRO.2016.2533639

    Article  Google Scholar 

  30. Ficuciello, F., Migliozzi, A., Coevoet, E., Petit, A., Duriez, C.: FEM-based deformation control for dexterous manipulation of 3D soft objects. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, pp. 4007–4013 (2018). https://doi.org/10.1109/IROS.2018.8593512

  31. Liu, P., Nazmul, M.N., Sun, L., Yu, H.: A survey on underactuated robotic systems: bio-inspiration, trajectory planning and control. Mechatronics 72, 102443 (2020). https://doi.org/10.1016/j.mechatronics.2020.102443

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengcheng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, S., Liu, P. (2021). A Review of Motion Planning Algorithms for Robotic Arm Systems. In: Chew, E., et al. RiTA 2020. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-4803-8_7

Download citation

Publish with us

Policies and ethics