Skip to main content

Long-Term Satellite Data Time Series Analysis for Land Degradation Mapping to Support Sustainable Land Management in Ukraine

  • Chapter
  • First Online:
Geo-intelligence for Sustainable Development

Abstract

Land provides a range of biophysical and socioeconomic goods and services that support the sustainability of ecosystem services, livelihoods, and human well-being. Maintaining ecosystem functions and services, while also supporting human well-being, are the primary goals of sustainable land management. Wide-scale multi-temporal land cover classifications created on the basis of satellite remote sensing data are recognized as necessary and important input to land degradation analysis. Evaluation of long-term land cover changes is of crucial importance for sustainable land management. In this research, we develop a Geo-intelligence framework providing quantitative assessment and mapping of such changes over large areas. To eliminate the inconsistency of land cover classes in overlapping classifications, a spatio-temporal merger of land cover classifications was carried out taking into account their probabilistic distribution. The proposed approach is applied in assessing long-term changes of the land cover in the Southern Ukraine, the region suffering the most from land degradation. Two land cover maps, for two distant years, were obtained with overall relevant accuracy. As a result of quantitative assessment of long-term changes of land cover by slightly modified T. Saaty’s analytic hierarchy procedure, a map of spatial distribution of land cover change of importance to the study area during the period of the study was developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed HA, Singh SK, Kumar M, Maina MS, Dzwairo R, Lal D (2020) Impact of urbanization and land cover change on urban climate: case study of Nigeria. Urban Climate 32:100600

    Google Scholar 

  • Bhatt A, Ghosh SK, Kumar A (2018) Spectral indices based object oriented classification for change detection using satellite data. Int J Syst Assur Eng Manag 9(1):33–42. https://doi.org/10.1007/s13198-016-0458-7

  • Birhanu L, Hailu BT, Bekele T, Demissew S (2019) Land use/land cover change along elevation and slope gradient in highlands of Ethiopia. Remote Sens Appl: Soc Environ 16:100260. https://doi.org/10.1016/j.rsase.2019.100260

  • Bruzzone L, Demir BA (2014) A review of modern approaches to classification of remote sensing data. In: Manakos I, Braun M, (eds), Land use and land cover mapping in Europe. Springer, Dordrecht, Netherlands, pp 127–143. https://doi.org/10.1007/978-94-007-7969-3_9. ISBN:978-94-007-7968-6

  • Carlson TN, Ripley DA (1997) On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens Environ 62(3):241–252. https://doi.org/10.1016/S0034-4257(97)00104-1

  • Castanedo F (2013) A review of data fusion techniques. Sci World J. https://doi.org/10.1155/2013/704504

  • Coppin PR, Bauer ME (1994) Processing of multitemporal Landsat TM imagery to optimize extraction of forest cover change features. IEEE Trans Geosci Remote Sens 32(4):918–927. https://doi.org/10.1109/36.298020

  • Coppin P, Jonckheere I, Nackaerts K, Muys B, Lambin E (2004) Digital change detection methods in ecosystem monitoring: a review. Int J Remote Sens 25:1565–1596. https://doi.org/10.1080/0143116031000101675

    Article  Google Scholar 

  • Dubovyk O (2017) The role of remote sensing in land degradation assessments: opportunities and challenges. Eur J Remote Sens 50(1):601–613. https://doi.org/10.1080/22797254.2017.1378926

    Article  Google Scholar 

  • Dudley N, Alexander S (2017) Agriculture and biodiversity: a review. Biodiversity 18(2–3):45–49

    Article  Google Scholar 

  • Enderle DI, Weih Jr RC (2005) Integrating supervised and unsupervised classification methods to develop a more accurate land cover classification. J Ark Acad Sci 59(1):65–73. https://scholarworks.uark.edu/jaas/vol59/iss1/10/

  • Foga S, Scaramuzza PL, Guo S, Zhu Z, Dilley Jr RD, Beckmann T, Laue B (2017) Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens Environ 194:379–390. https://doi.org/10.1016/j.rse.2017.03.026

  • Gómez C, White JC, Wulder MA (2016) Optical remotely sensed time series data for land cover classification: a review. ISPRS J Photogramm Remote Sens 116:55–72. https://doi.org/10.1016/j.isprsjprs.2016.03.008

    Article  Google Scholar 

  • Hansen MC, Loveland TR (2012) A review of large area monitoring of land cover change using Landsat data. Remote Sens Environ 122:66–74. https://doi.org/10.1016/j.rse.2011.08.024

    Article  Google Scholar 

  • Hermosilla T, Wulder MA, White JC, Coops NC, Hobart GW (2015) An integrated Landsat time series protocol for change detection and generation of annual gap-free surface reflectance composites. Remote Sens Environ 158:220–234. https://doi.org/10.1016/j.rse.2014.11.005

  • Hermosilla T, Wulder MA, White JC, Coops NC, Hobart GW (2018) Disturbance-informed annual land cover classification maps of Canada's forested ecosystems for a 29-year landsat time series. Can J Remote Sens 44(1):67–87. https://doi.org/10.1080/07038992.2018.1437719

  • Hussain M, Chen D, Cheng A, Wei H, Stanley D (2013) Change detection from remotely sensed images: from pixel-based to object-based approaches. ISPRS J Photogramm Remote Sens 80:91–106. https://doi.org/10.1016/j.isprsjprs.2013.03.006

  • Kaspersen PS, Fensholt R, Drews M (2015) Using Landsat vegetation indices to estimate impervious surface fractions for European cities. Remote Sens 7(6):8224–8249. https://doi.org/10.3390/rs70608224

  • Kumar N, Singh SK, Pandey HK (2018) Drainage morphometric analysis using open access earth observation datasets in a drought-affected part of Bundelkhand India. Appl Geomat 10(3):173–189

    Article  Google Scholar 

  • Li H, Liu Q (2008) Comparison of NDBI and NDVI as indicators of surface urban heat island effect in MODIS imagery. In: International conference on earth observation data processing and analysis (ICEODPA), vol 7285. International Society for Optics and Photonics, p 728503. https://doi.org/10.1117/12.815679

  • Loveland TR, Irons JR (2016) Landsat 8: the plans, the reality, and the legacy. Remote Sens Environ 185:1–6. https://doi.org/10.1016/j.rse.2016.07.033

    Article  Google Scholar 

  • Masek JG, Vermote EF, Saleous N, Wolfe R, Hall FG, Huemmrich KF, Gao F, Kutler J, Lim TK (2013) LEDAPS Landsat calibration, reflectance, atmospheric correction preprocessing code. Version 2. Model Product; Distributed Active Archive Center, Oak Ridge, Tennessee, United States. https://doi.org/10.3334/ORNLDAAC/1146

  • Mbow HOP, Reisinger A, Canadell J, O’Brien P (2017) Special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (SR2). IPCC, Ginevra

    Google Scholar 

  • Mishra N, Helder D, Barsi J, Markham B (2016) Continuous calibration improvement in solar reflective bands: landsat 5 through Landsat 8. Remote Sens Environ 185:7–15. https://doi.org/10.1016/j.rse.2016.07.032

    Article  Google Scholar 

  • Munthali MG, Mustak S, Adeola A, Botai J, Singh SK, Davis N (2020) Modelling land use and land cover dynamics of Dedza district of Malawi using hybrid cellular automata and markov model. Remote Sens Appl: Soc Environ 17:100276

    Google Scholar 

  • Nielsen AA, Conradsen K, Simpson JJ (1998) Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: New approaches to change detection studies. Remote Sens Environ 64(1):1–19. https://doi.org/10.1016/s0034-4257(97)00162-4

  • Nordberg ML, Evertson J (2005) Vegetation index differencing and linear regression for change detection in a Swedish mountain range using Landsat TM® and ETM+® imagery. Land Degrad Dev 16(2):139–149. https://doi.org/10.1002/ldr.660

  • Olofsson P, Foody GM, Stehman SV, Woodcock CE (2013) Making better use of accuracy data in land change studies: estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens Environ 129:122–131

    Article  Google Scholar 

  • Olthof I, Fraser RH (2014) Detecting landscape changes in high latitude environments using Landsat trend analysis: 2 Classification. Remote Sens 6(11):11558–11578. https://doi.org/10.3390/rs61111558

  • Prasad VS, Kousalya P (2017) Role of consistency in analytic hierarchy process–consistency improvement methods. Indian J Sci Technol 10(29):1–5. https://doi.org/10.17485/ijst/2017/v10i29/100784

  • Prince S, Von Maltitz G, Zhang F, Byrne K, Driscoll C, Eshel G, ... Moreno-Mateos D (2018) Status and trends of land degradation and restoration and associated changes in biodiversity and ecosystem functions. In: Montanarella L, Scholes R, Brainich A (eds) The IPBES Assessment Report On Land Degradation And Restoration. Bonn, Germany, p 744. https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers19-02/010075051.pdf

  • Richards JA (1999) Remote sensing digital image analysis. Berlin. Springer 1999:240. ISBN 978-3-642-30062-2

    Google Scholar 

  • Rouse Jr, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Paper A 20. In Third Earth Resources Technology Satellite-1 Symposium: The Proceedings of a Symposium Held by Goddard Space Flight Center at Washington, DC on December 10–14, 1973: Prepared at Goddard Space Flight Center (Vol. 351, p. 309). Scientific and Technical Information Office, National Aeronautics and Space Administration. Available online: https://ntrs.nasa.gov/search.jsp?R=19740022614.

  • Roy DP, Kovalskyy V, Zhang H, Yan L, Kommareddy I (2015) The utility of Landsat data for global long term terrestrial monitoring. In: Remote Sensing Time Series. Springer, Cham, pp 289–305. https://doi.org/10.1016/j.rse.2019.02.016

  • Saaty TL (2008) Decision making with the analytic hierarchy process. Int J Serv Sci 1(1):83–98. https://doi.org/10.1504/ijssci.2008.017590

    Article  Google Scholar 

  • Shimrah T, Sarma K, Varga OG, Szilard S, Singh SK (2019) Quantitative assessment of landscape transformation using earth observation datasets in Shirui Hill of Manipur, India. Remote Sens Appl: Soc Environ 15:100237

    Google Scholar 

  • Singh SK, Srivastava PK, Gupta M, Thakur JK, Mukherjee S (2014) Appraisal of land use/land cover of mangrove forest ecosystem using support vector machine. Environ Earth Sci 71(5):2245–2255

    Article  Google Scholar 

  • Singh SK, Mustak S, Srivastava PK, Szabó S, Islam T (2015) Predicting spatial and decadal LULC changes through cellular automata Markov chain models using earth observation datasets and geo-information. Environ Process 2(1):61–78

    Article  Google Scholar 

  • Singh SK, Srivastava PK, Szabó S, Petropoulos GP, Gupta M, Islam T (2017) Landscape transform and spatial metrics for mapping spatiotemporal land cover dynamics using Earth observation data-sets. Geocarto Int 32(2):113–127

    Google Scholar 

  • Singh SK, Laari PB, Mustak SK, Srivastava PK, Szabó S (2018) Modelling of land use land cover change using earth observation data-sets of Tons River Basin, Madhya Pradesh India. Geocarto Int 33(11):1202–1222

    Article  Google Scholar 

  • Stankevich SA, Kozlova AA (2015) Long-term land cover change computer-aided mapping by remote sensed imagery. In: 2015 international conference on information and digital technologies (pp 339–341). IEEE, Zilina, Slovakia, 7–9 July 2015; IEEE, Piscataway, New Jersey, United States, 2015, pp 327–329. https://doi.org/10.1109/DT.2015.7222994

  • Stankevich S, Piestova I, Kozlova A, Titarenko O, Singh SK (2020) Satellite radar interferometry processing and elevation change analysis for geoenvironmental hazard assessment. Techniques for Disaster Risk Management and Mitigation, pp 125–139

    Google Scholar 

  • Stehman SV, Foody GM (2019) Key issues in rigorous accuracy assessment of land cover products. Remote Sens Environ 231:111199

    Google Scholar 

  • Tadono T, Ishida H, Oda F, Naito S, Minakawa K, Iwamoto H (2014) Precise global DEM generation By ALOS PRISM. ISPRS Ann Photogramm Remote Sens Spat Inf Sci. 2014:II-4, 71–76. https://doi.org/10.5194/isprsannals-II-4-71-2014

  • Tso B, Mather PM (2009) Classification methods for remotely sensed data, 2nd ed. CRC Press, Boca Raton, USA. https://doi.org/10.1201/9781420090741. ISBN:9781420090727

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8(2):127–150. https://doi.org/10.1016/0034-4257(79)90013-0

  • Vermote E, Justice C, Claverie M, Franch B (2016) Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens Environ 185:46–56. https://doi.org/10.1016/j.rse.2016.04.008

  • Wilson EH, Sader SA (2002) Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens Environ 80(3):385–396. https://doi.org/10.1016/s0034-4257(01)00318-2

  • Yang D, Chen X, Chen J, Cao X (2016) Multiscale integration approach for land cover classification based on minimal entropy of posterior probability. IEEE J Select Top Appl Earth Observ Remote Sens 10(3):1105–1116. https://doi.org/10.1109/JSTARS.2016.2615073

    Article  Google Scholar 

  • Zewdie W, Csaplovies E (2015) Remote sensing based multi-temporal land cover classification and change detection in northwestern Ethiopia. Eur J Remote Sens 48(1):121–139. https://doi.org/10.5721/EuJRS20154808

    Article  Google Scholar 

  • Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens 24(3):583–594. https://doi.org/10.1080/01431160304987

  • Zhang H, Sekhari A, Ouzrout Y, Bouras A (2014) Deriving consistent pairwise comparison matrices in decision making methodologies based on linear programming method. J Intell Fuzzy Syst 27(4):1977–1989. https://doi.org/10.3233/IFS-141164

    Article  Google Scholar 

  • Zhu Z, Woodcock CE (2014) Continuous change detection and classification of land cover using all available Landsat data. Remote Sens Environ 144:152–171. https://doi.org/10.1016/j.rse.2014.01.011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mykhailo Popov or Sudhir Kumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Popov, M. et al. (2021). Long-Term Satellite Data Time Series Analysis for Land Degradation Mapping to Support Sustainable Land Management in Ukraine. In: Singh, T.P., Singh, D., Singh, R.B. (eds) Geo-intelligence for Sustainable Development. Advances in Geographical and Environmental Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-16-4768-0_11

Download citation

Publish with us

Policies and ethics