Skip to main content

Chemotherapy Effects on Immune System

  • Chapter
  • First Online:
Cancer Diagnostics and Therapeutics

Abstract

The primary goal of conventional anticancer drugs always has been killing the tumor cells in the body. Cancer growth starts with certain irreversible changes within the immune system, and this in turn gave rise to the concept that tumor growth can be halted only by destroying the malignant cells. However, with the advent of targeted chemotherapeutic agents, drugs that specifically suppress cells promoting tumor growth and stimulate the immune system to act against the cancer cells, the management of cancers took a novel approach. Various conventional chemotherapeutic agents also have showed immune modulatory effects in recently conducted studies. Thus, targeting the immune system rather than the cancer cell seems to be a new and better perspective in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bugaut H, Bruchard M, Berger H, Derangère V, Odoul L, Euvrard R, Ladoire S, Chalmin F, Végran F, Rébé C, Apetoh L (2013) Bleomycin exerts ambivalent antitumor immune effect by triggering both immunogenic cell death and proliferation of regulatory T cells. PLoS One 8(6):e65181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S, Chaput N, Schmitt E, Hamai A, Hervas-Stubbs S, Obeid M, Coutant F (2005) Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 202(12):1691–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaplin DD (2010) Overview of the immune response. J Allergy Clin Immunol 125(2):S3–S23

    Article  PubMed  PubMed Central  Google Scholar 

  • Chemotherapy Drugs Used to Treat Arthritis (2016). Retrieved from: https://www.webmd.com/arthritis/chemotherapy-drugs#1

  • Demaria S, Volm MD, Shapiro RL, Yee HT, Oratz R, Formenti SC, Muggia F, Symmans WF (2001) Development of tumor-infiltrating lymphocytes in breast cancer after neoadjuvant paclitaxel chemotherapy. Clin Cancer Res 7(10):3025–3030

    CAS  PubMed  Google Scholar 

  • DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, Rugo HS (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1(1):54–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeVita VT, Chu E (2008) A history of cancer chemotherapy. Cancer Res 68(21):8643–8653

    Article  CAS  PubMed  Google Scholar 

  • Di Caro G, Cortese N, Castino GF, Grizzi F, Gavazzi F, Ridolfi C, Capretti G, Mineri R, Todoric J, Zerbi A, Allavena P (2016) Dual prognostic significance of tumor-associated macrophages in human pancreatic adenocarcinoma treated or untreated with chemotherapy. Gut 65(10):1710–1720

    Article  CAS  PubMed  Google Scholar 

  • Ding ZC, Lu X, Yu M, Lemos H, Huang L, Chandler P, Liu K, Walters M, Krasinski A, Mack M, Blazar BR (2014) Immunosuppressive myeloid cells induced by chemotherapy attenuate antitumor CD4+ T-cell responses through the PD-1–PD-L1 axis. Cancer Res 74(13):3441–3453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fridman WH, Pages F, Sautes-Fridman C, Galon J (2012) The immune contexture in human tumors: impact on clinical outcome. Nat Rev Cancer 12(4):298–306

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G (2015) Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28(6):690–714

    Article  CAS  PubMed  Google Scholar 

  • Gershan JA, Barr KM, Weber JJ, Jing W, Johnson BD (2015) Immune modulating effects of cyclophosphamide and treatment with tumor lysate/CpG synergize to eliminate murine neuroblastoma. J Immunother Cancer 3(1):1–11

    Article  Google Scholar 

  • Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F, Solary E, Le Cesne A, Zitvogel L, Chauffert B (2007) Metronomic cyclophosphamide regimen selectively depletes CD4+ CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56(5):641–648

    Article  CAS  PubMed  Google Scholar 

  • Goeppert B, Frauenschuh L, Zucknick M, Stenzinger A, Andrulis M, Klauschen F, Joehrens K, Warth A, Renner M, Mehrabi A, Hafezi M (2013) Prognostic impact of tumor-infiltrating immune cells on biliary tract cancer. Br J Cancer 109(10):2665–2674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han LY, Fletcher MS, Urbauer DL, Mueller P, Landen CN, Kamat AA, Lin YG, Merritt WM, Spannuth WA, Deavers MT, De Geest K (2008) HLA class I antigen processing machinery component expression and intratumoral T-Cell infiltrate as independent prognostic markers in ovarian carcinoma. Clin Cancer Res 14(11):3372–3379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  • He S, Yin T, Li D, Gao X, Wan Y, Ma X, Ye T, Guo F, Sun J, Lin Z, Wang Y (2013) Enhanced interaction between natural killer cells and lung cancer cells: involvement in gefitinib-mediated immunoregulation. J Transl Med 11(1):1–11

    Article  Google Scholar 

  • How Is Chemotherapy Used to Treat Cancer? (2016). Retrieved from: https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/chemotherapy/how-is-chemotherapy-used-to-treat-cancer.html

  • Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S, Dai RM (2013) Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342(6161):967–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Issa-Nummer Y, Darb-Esfahani S, Loibl S, Kunz G, Nekljudova V, Schrader I, Sinn BV, Ulmer HU, Kronenwett R, Just M, Kühn T (2013) Prospective validation of immunological infiltrate for prediction of response to neoadjuvant chemotherapy in HER2-negative breast cancer–a substudy of the neoadjuvant GeparQuinto trial. PLoS One 8(12):e79775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanterman J, Sade-Feldman M, Biton M, Ish-Shalom E, Lasry A, Goldshtein A, Hubert A, Baniyash M (2014) Adverse immunoregulatory effects of 5FU and CPT11 chemotherapy on myeloid-derived suppressor cells and colorectal cancer outcomes. Cancer Res 74(21):6022–6035

    Article  CAS  PubMed  Google Scholar 

  • Kasajima A, Sers C, Sasano H, Jöhrens K, Stenzinger A, Noske A, Buckendahl AC, Darb-Esfahani S, Müller BM, Budczies J, Lehman A (2010) Down-regulation of the antigen processing machinery is linked to a loss of inflammatory response in colorectal cancer. Hum Pathol 41(12):1758–1769

    Article  CAS  PubMed  Google Scholar 

  • Kennedy AD, DeLeo FR (2009) Neutrophil apoptosis and the resolution of infection. Immunol Res 43(1–3):25–61

    Article  PubMed  Google Scholar 

  • Khallouf H, Märten A, Serba S, Teichgräber V, Büchler MW, Jäger D, Schmidt J (2012) 5-Fluorouracil and interferon-α immunochemotherapy enhances immunogenicity of murine pancreatic cancer through upregulation of NKG2D ligands and MHC class I. J Immunother 35(3):245–253

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Kim SH, Kim MJ, Kim SJ, Park SJ, Chung JS, Bae JH, Kang CD (2011) EGFR inhibitors enhanced the susceptibility to NK cell-mediated lysis of lung cancer cells. J Immunother 34(4):372–381

    Article  CAS  PubMed  Google Scholar 

  • Lim SH, Chua WEI, Cheng C, Descallar J, Ng W, Solomon M, Bokey L, Wong K, Lee MT, De Souza P, Shin JS (2014) Effect of neoadjuvant chemoradiation on tumor-infiltrating/associated lymphocytes in locally advanced rectal cancers. Anticancer Res 34(11):6505–6513

    CAS  PubMed  Google Scholar 

  • Liu WM, Fowler DW, Smith P, Dalgleish AG (2010) Pre-treatment with chemotherapy can enhance the antigenicity and immunogenicity of tumors by promoting adaptive immune responses. Br J Cancer 102(1):115–123

    Article  CAS  PubMed  Google Scholar 

  • Martins I, Kepp O, Schlemmer F, Adjemian S, Tailler M, Shen S, Michaud M, Menger L, Gdoura A, Tajeddine N, Tesniere A (2011) Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene 30(10):1147–1158

    Article  CAS  PubMed  Google Scholar 

  • Medina PJ, Fausel C (2008) Pharmacotherapy, a pathophysiologic approach seventh edition: cancer treatment and chemotherapy. Edited by DiPiro JP, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM

    Google Scholar 

  • Ménard C, Blay JY, Borg C, Michiels S, Ghiringhelli F, Robert C, Nonn C, Chaput N, Taïeb J, Delahaye NF, Flament C (2009) Natural killer cell IFN-γ levels predict long-term survival with imatinib mesylate therapy in gastrointestinal stromal tumor–bearing patients. Cancer Res 69(8):3563–3569

    Article  CAS  PubMed  Google Scholar 

  • Mignot G, Hervieu A, Vabres P, Dalac S, Jeudy G, Bel B, Apetoh L, Ghiringhelli F (2014) Prospective study of the evolution of blood lymphoid immune parameters during dacarbazine chemotherapy in metastatic and locally advanced melanoma patients. PLoS One 9(8):e105907

    Article  PubMed  PubMed Central  Google Scholar 

  • Mizoguchi I, Yoshimoto T, Katagiri S, Mizuguchi J, Tauchi T, Kimura Y, Inokuchi K, Ohyashiki JH, Ohyashiki K (2013) Sustained upregulation of effector natural killer cells in chronic myeloid leukemia after discontinuation of imatinib. Cancer Sci 104(9):1146–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammed ZMA, Going JJ, Edwards J, Elsberger B, McMillan DC (2013) The relationship between lymphocyte subsets and clinico-pathological determinants of survival in patients with primary operable invasive ductal breast cancer. Br J Cancer 109(6):1676–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray JC, Aldeghaither D, Wang S, Nasto RE, Jablonski SA, Tang Y, Weiner LM (2014) c-Abl modulates tumor cell sensitivity to antibody-dependent cellular cytotoxicity. Cancer Immunol Res 2(12):1186–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neagu M, Constantin C, Zurac S (2013) Immune parameters in the prognosis and therapy monitoring of cutaneous melanoma patients: experience, role, and limitations. BioMed Res Int 2013

    Google Scholar 

  • Nelson PN, Reynolds GM, Waldron EE, Ward E, Giannopoulos K, Murray PG (2000) Demystified…: monoclonal antibodies. Mol Pathol 53(3):111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raviraj J, Bokkasam VK, Kumar VS, Reddy US, Suman V (2014) Radiosensitizers, radioprotectors, and radiation mitigators. Indian J Dental Res 25(1):83

    Article  Google Scholar 

  • Riva G, Luppi M, Lagreca I, Barozzi P, Quadrelli C, Vallerini D, Zanetti E, Basso S, Forghieri F, Morselli M, Maccaferri M (2014) Long-term molecular remission with persistence of BCR-ABL1-specific cytotoxic T cells following imatinib withdrawal in an elderly patient with Philadelphia-positive ALL. Br J Haematol 164(2):299–302

    Article  PubMed  Google Scholar 

  • Romero AI, Chaput N, Poirier-Colame V, Rusakiewicz S, Jacquelot N, Chaba K, Mortier E, Jacques Y, Caillat-Zucman S, Flament C, Caignard A (2014) Regulation of CD4+ NKG2D+ Th1 cells in patients with metastatic melanoma treated with sorafenib: role of IL-15Rα and NKG2D triggering. Cancer Res 74(1):68–80

    Article  CAS  PubMed  Google Scholar 

  • Roselli M, Cereda V, di Bari MG, Formica V, Spila A, Jochems C, Farsaci B, Donahue R, Gulley JL, Schlom J, Guadagni F (2013) Effects of conventional therapeutic interventions on the number and function of regulatory T cells. Oncoimmunology 2(10):e27025

    Article  PubMed  PubMed Central  Google Scholar 

  • Sawant A, Schafer CC, Jin TH, Zmijewski J, Hubert MT, Roth J, Sun Z, Siegal GP, Thannickal VJ, Grant SC, Ponnazhagan S (2013) Enhancement of antitumor immunity in lung cancer by targeting myeloid-derived suppressor cell pathways. Cancer Res 73(22):6609–6620

    Article  CAS  PubMed  Google Scholar 

  • Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331(6024):1565–1570

    Article  CAS  PubMed  Google Scholar 

  • Senovilla L, Vitale I, Martins I, Tailler M, Pailleret C, Michaud M, Galluzzi L, Adjemian S, Kepp O, Niso-Santano M, Shen S (2012) An immunosurveillance mechanism controls cancer cell ploidy. Science 337(6102):1678–1684

    Article  CAS  PubMed  Google Scholar 

  • Shalapour S, Font-Burgada J, Di Caro G, Zhong Z, Sanchez-Lopez E, Dhar D, Willimsky G, Ammirante M, Strasner A, Hansel DE, Jamieson C (2015) Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy. Nature 521(7550):94–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soeda A, Morita-Hoshi Y, Makiyama H, Morizane C, Ueno H, Ikeda M, Okusaka T, Yamagata S, Takahashi N, Hyodo I, Takaue Y (2009) Regular dose of gemcitabine induces an increase in CD14+ monocytes and CD11c+ dendritic cells in patients with advanced pancreatic cancer. Jpn J Clin Oncol 39(12):797–806

    Article  PubMed  Google Scholar 

  • Terme M, Pernot S, Marcheteau E, Sandoval F, Benhamouda N, Colussi O, Dubreuil O, Carpentier AF, Tartour E, Taieb J (2013) VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res 73(2):539–549

    Article  CAS  PubMed  Google Scholar 

  • Thalidomide: Research advances in cancer and other conditions (2016). Retrieved from: https://www.mayoclinic.org/diseases-conditions/cancer/in-depth/thalidomide/art-20046534

  • Valent A, Penault-Llorca F, Cayre A, Kroemer G (2013) Change in HER2 (ERBB2) gene status after taxane-based chemotherapy for breast cancer: polyploidization can lead to diagnostic pitfalls with potential impact for clinical management. Cancer Genet 206(1-2):37–41

    Article  CAS  PubMed  Google Scholar 

  • Walker EA Jr (1964) Management of the child with a fatal disease. Clin Pediatr 3:418–427

    Article  Google Scholar 

  • Wang B, Xu D, Yu X, Ding T, Rao H, Zhan Y, Zheng L, Li L (2011) Association of intra-tumoral infiltrating macrophages and regulatory T cells is an independent prognostic factor in gastric cancer after radical resection. Ann Surg Oncol 18(9):2585–2593

    Article  PubMed  Google Scholar 

  • West AC, Mattarollo SR, Shortt J, Cluse LA, Christiansen AJ, Smyth MJ, Johnstone RW (2013) An intact immune system is required for the anticancer activities of histone deacetylase inhibitors. Cancer Res 73(24):7265–7276

    Article  CAS  PubMed  Google Scholar 

  • What Is Targeted Cancer Therapy? (2016). Retrieved from: https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/targeted-therapy/what-is.html

  • Wu J, Waxman DJ (2015) Metronomic cyclophosphamide eradicates large implanted GL261 gliomas by activating antitumor Cd8+ T-cell responses and immune memory. Oncoimmunology 4(4):e1005521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Rao GS, Groh V, Spies T, Gattuso P, Kaufman HL, Plate J, Prinz RA (2011) Major histocompatibility complex class I-related chain A/B (MICA/B) expression in tumor tissue and serum of pancreatic cancer: role of uric acid accumulation in gemcitabine-induced MICA/B expression. BMC Cancer 11(1):1–11

    Article  CAS  Google Scholar 

  • Zitvogel L, Tesniere A, Kroemer G (2006) Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 6(10):715–727

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hota, D., Tripathy, A. (2022). Chemotherapy Effects on Immune System. In: Basu, S.K., Panda, C.K., Goswami, S. (eds) Cancer Diagnostics and Therapeutics . Springer, Singapore. https://doi.org/10.1007/978-981-16-4752-9_13

Download citation

Publish with us

Policies and ethics