Skip to main content

Spondyloarthropathies and Gut Microbiota

  • Chapter
  • First Online:
Ankylosing Spondylitis - Axial Spondyloarthritis

Abstract

The effect of the gut microbiome has been demonstrated on the health and diseases of the human being. Spondyloarthropathies as a major subgroup of autoimmune disorders have also been investigated in terms of microbiota influence. Accordingly, some distinctions have been found in combination and frequency of microbial species in SpA patients gut comparing to the healthy population; however, these findings could not be usually confirmed by subsequent studies. Nonetheless, there have been some strains shown to exert immunoregulatory effects, such as Lactobacilli whereas, there are others found with more frequency in SpA patients presumed to trigger pro-inflammatory responses. Regarding the considerable role of microbiota in the development of gut immunity and tolerance induction, more studies are required to clarify the association of pathogenic and protective microbial species with the immune profile of the gastrointestinal tract. Despite the incomplete description of gut microbiota and lack of robust consensus on present findings, there have been some efforts to replace unhealthy gut microbiota with healthy species in order to restrain inflammatory responses. In the present chapter, we summarize the available findings of correlation between gut microbiota and SpAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207.

    Article  CAS  Google Scholar 

  2. Wang B, Yao M, Lv L, Ling Z, Li L. The human microbiota in health and disease. Engineering. 2017;3(1):71–82.

    Article  Google Scholar 

  3. Asquith M, Elewaut D, Lin P, Rosenbaum JT. The role of the gut and microbes in the pathogenesis of spondyloarthritis. Best Pract Res Clin Rheumatol. 2014;28(5):687–702.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009;106(10):3698–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Soichi T. The effect of probiotics and gut microbiota on Th17 cells. Int Rev Immunol. 2013;32(5–6):511–25.

    Google Scholar 

  6. Manichanh C, Borruel N, Casellas F, Guarner F. The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol. 2012;9(10):599–608.

    Article  CAS  PubMed  Google Scholar 

  7. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.

    Article  CAS  PubMed  Google Scholar 

  8. Atarashi K, Honda K. Microbiota in autoimmunity and tolerance. Curr Opin Immunol. 2011;23(6):761–8.

    Article  CAS  PubMed  Google Scholar 

  9. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Erratum: enterotypes of the human gut microbiome (Nature (2011) 473 (174–180)). 2011;474(7353).

    Google Scholar 

  11. Costello ME, Ciccia F, Willner D, Warrington N, Robinson PC, Gardiner B, et al. Brief report: intestinal dysbiosis in ankylosing spondylitis. Arthritis Rheumatol. 2015;67(3):686–91.

    Article  PubMed  Google Scholar 

  12. Ebringer R, Cooke D, Cawdell D, Cowling P, Ebringer A. Ankylosing spondylitis: klebsiella and HL-A B27. Oxford: Oxford University Press; 1977.

    Google Scholar 

  13. Stebbings S, Munro K, Simon M, Tannock G, Highton J, Harmsen H, et al. Comparison of the faecal microflora of patients with ankylosing spondylitis and controls using molecular methods of analysis. Rheumatology. 2002;41(12):1395–401.

    Article  CAS  PubMed  Google Scholar 

  14. Aggarwal A, Sarangi A, Gaur P, Shukla A, Aggarwal R. Gut microbiome in children with enthesitis-related arthritis in a developing country and the effect of probiotic administration. Clin Exp Immunol. 2017;187(3):480–9.

    Article  CAS  PubMed  Google Scholar 

  15. Stoll ML, Kumar R, Morrow CD, Lefkowitz EJ, Cui X, Genin A, et al. Altered microbiota associated with abnormal humoral immune responses to commensal organisms in enthesitis-related arthritis. Arthritis Res Ther. 2014;16(6):486.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Singh YP, Singh AK, Aggarwal A, Misra R. Evidence of cellular immune response to outer membrane protein of Salmonella typhimurium in patients with enthesitis-related arthritis subtype of juvenile idiopathic arthritis. J Rheumatol. 2011;38(1):161–6.

    Article  PubMed  Google Scholar 

  17. Zhou C, Zhao H, Xiao X-Y, Guo R-J, Wang Q, Chen H, et al. Metagenomic profiling of the pro-inflammatory gut microbiota in ankylosing spondylitis. J Autoimmun. 2020;107:102360.

    Article  CAS  PubMed  Google Scholar 

  18. Scher JU, Ubeda C, Artacho A, Attur M, Isaac S, Reddy SM, et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 2015;67(1):128–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Keat A, Maini R, Nkwazi G, Pegrum G, Ridgway G, Scott JT. Role of Chlamydia trachomatis and HLA-B27 in sexually acquired reactive arthritis. Br Med J. 1978;1(6113):605–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Granfors K, Jalkanen S, Mäki-Ikola O, Lahesmaa-Rantala R, Saario R, Toivanen A, et al. Salmonella lipopolysaccharide in synovial cells from patients with reactive arthritis. Lancet. 1990;335(8691):685–8.

    Article  CAS  PubMed  Google Scholar 

  21. Merilahti-Palo R, Söderström K, Lahesmaa-Rantala R, Granfors K, Toivanen A. Bacterial antigens in synovial biopsy specimens in yersinia triggered reactive arthritis. Ann Rheum Dis. 1991;50(2):87–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stebbings SM, Taylor C, Tannock GW, Baird MA, Highton J. The immune response to autologous bacteroides in ankylosing spondylitis is characterized by reduced interleukin 10 production. J Rheumatol. 2009;36(4):797–800.

    Article  CAS  PubMed  Google Scholar 

  23. Stone M, Payne U, Schentag C, Rahman P, Pacheco-Tena C, Inman RD. Comparative immune responses to candidate arthritogenic bacteria do not confirm a dominant role for Klebsiella pneumonia in the pathogenesis of familial ankylosing spondylitis. Rheumatology (Oxford). 2004;43(2):148–55.

    Article  CAS  Google Scholar 

  24. Tani Y, Tiwana H, Hukuda S, Nishioka J, Fielder M, Wilson C, et al. Antibodies to Klebsiella, Proteus, and HLA-B27 peptides in Japanese patients with ankylosing spondylitis and rheumatoid arthritis. J Rheumatol. 1997;24(1):109–14.

    CAS  PubMed  Google Scholar 

  25. Rashid T, Ebringer A. Ankylosing spondylitis is linked to Klebsiella—the evidence. Clin Rheumatol. 2007;26(6):858–64.

    Article  PubMed  Google Scholar 

  26. Stolwijk C, Boonen A, van Tubergen A, Reveille JD. Epidemiology of spondyloarthritis. Rheum Dis Clin. 2012;38(3):441–76.

    Article  Google Scholar 

  27. Ellinghaus D, Jostins L, Spain SL, Cortes A, Bethune J, Han B, et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat Genet. 2016;48(5):510–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mielants H, Veys E, Cuvelier C, De Vos MJR. Ileocolonoscopic findings in seronegative spondylarthropathies. Br J Rheumatol. 1988;27(Suppl_2):95–105.

    Article  PubMed  Google Scholar 

  29. Mielants H, Veys E, Cuvelier C, De MV, Goemaere S, De LC, et al. The evolution of spondyloarthropathies in relation to gut histology. III. Relation between gut and joint. J Rheumatol. 1995;22(12):2279–84.

    CAS  PubMed  Google Scholar 

  30. Van Praet L, Van den Bosch FE, Jacques P, Carron P, Jans L, Colman R, et al. Microscopic gut inflammation in axial spondyloarthritis: a multiparametric predictive model. Ann Rheum Dis. 2013;72(3):414–7.

    Article  PubMed  Google Scholar 

  31. Shivashankar R, Loftus EV, Tremaine WJ, Bongartz T, Harmsen WS, Zinsmeister AR, et al. Incidence of spondyloarthropathy in patients with Crohn’s disease: a population-based study. J Rheumatol. 2012;39(11):2148–52.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Malaty HM, Lo GH-W, Hou JK. Characterization and prevalence of spondyloarthritis and peripheral arthritis among patients with inflammatory bowel disease. Clin Exp Gastroenterol. 2017;10:259–63.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Van Praet L, Jans L, Carron P, Jacques P, Glorieus E, Colman R, et al. Degree of bone marrow oedema in sacroiliac joints of patients with axial spondyloarthritis is linked to gut inflammation and male sex: results from the GIANT cohort. Ann Rheum Dis. 2014;73(6):1186–9.

    Article  PubMed  Google Scholar 

  34. Nanda S. Novel genetic variants link ankylosing spondylitis and Crohn disease: evidence of a shared pathogenesis? Nat Rev Rheumatol. 2011;7(2):70.

    Article  PubMed  Google Scholar 

  35. Danoy P, Pryce K, Hadler J, Bradbury LA, Farrar C, Pointon J, et al. Association of variants at 1q32 and STAT3 with ankylosing spondylitis suggests genetic overlap with Crohn’s disease. PLoS Genet. 2010;6(12):e1001195.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Taurog JD, Richardson JA, Croft J, Simmons WA, Zhou M, Fernández-Sueiro JL, et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med. 1994;180(6):2359–64.

    Article  CAS  PubMed  Google Scholar 

  37. Rath HC, Herfarth HH, Ikeda JS, Grenther WB, Hamm TE, Balish E, et al. Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. J Clin Invest. 1996;98(4):945–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin P, Bach M, Asquith M, Lee AY, Akileswaran L, Stauffer P, et al. HLA-B27 and human β2-microglobulin affect the gut microbiota of transgenic rats. PLoS One. 2014;9(8):e105684.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. McGeachy MJ, Cua DJ. The link between IL-23 and Th17 cell-mediated immune pathologies. Seminars in immunology. Seminars Immunol. 2007;19:372–6. Elsevier

    Article  CAS  Google Scholar 

  40. Ausiello CM, Fedele G, Palazzo R, Spensieri F, Ciervo A, Cassone AJM, et al. 60-kDa heat shock protein of Chlamydia pneumoniae promotes a T helper type 1 immune response through IL-12/IL-23 production in monocyte-derived dendritic cells. Microbes Infect. 2006;8(3):714–20.

    Article  CAS  PubMed  Google Scholar 

  41. Rehaume LM, Mondot S, Aguirre de Cárcer D, Velasco J, Benham H, Hasnain SZ, et al. ZAP-70 genotype disrupts the relationship between microbiota and host, leading to spondyloarthritis and ileitis in SKG mice. Arthritis Rheumatol. 2014;66(10):2780–92.

    Article  CAS  PubMed  Google Scholar 

  42. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341(6145):569–73.

    Article  CAS  PubMed  Google Scholar 

  44. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446–50.

    Article  CAS  PubMed  Google Scholar 

  45. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331(6015):337–41.

    Article  CAS  PubMed  Google Scholar 

  46. Hill DA, Artis D. Intestinal bacteria and the regulation of immune cell homeostasis. Annu Rev Immunol. 2009;28:623–67.

    Article  CAS  Google Scholar 

  47. Lécuyer E, Rakotobe S, Lengliné-Garnier H, Lebreton C, Picard M, Juste C, et al. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity. 2014;40(4):608–20.

    Article  PubMed  CAS  Google Scholar 

  48. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Umesaki Y, Okada Y, Matsumoto S, Imaoka A, Setoyama H. Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiol Immunol. 1995;39(8):555–62.

    Article  CAS  PubMed  Google Scholar 

  50. Wu H-J, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010;32(6):815–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kuwahara T, Ogura Y, Oshima K, Kurokawa K, Ooka T, Hirakawa H, et al. The lifestyle of the segmented filamentous bacterium: a non-culturable gut-associated immunostimulating microbe inferred by whole-genome sequencing. DNA Res. 2011;18(4):291–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Faure M, Moennoz D, Mettraux C, Montigon F, Schiffrin E, Obled C, et al. The chronic colitis developed by HLA-B27 transgenic rats is associated with altered in vivo mucin synthesis. Dig Dis Sci. 2004;49(2):339–46.

    Article  CAS  PubMed  Google Scholar 

  53. Van der Sluis M, De Koning BA, De Bruijn AC, Velcich A, Meijerink JP, Van Goudoever JB, et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology. 2006;131(1):117–29.

    Article  PubMed  CAS  Google Scholar 

  54. Shan M, Gentile M, Yeiser JR, Walland AC, Bornstein VU, Chen K, et al. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science. 2013;342(6157):447–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Laukens D, Peeters H, Marichal D, Vander Cruyssen B, Mielants H, Elewaut D, et al. CARD15 gene polymorphisms in patients with spondyloarthropathies identify a specific phenotype previously related to Crohn’s disease. Ann Rheum Dis. 2005;64(6):930–5.

    Article  CAS  PubMed  Google Scholar 

  56. Fert I, Cagnard N, Glatigny S, Letourneur F, Jacques S, Smith JA, et al. Reverse interferon signature is characteristic of antigen-presenting cells in human and rat spondyloarthritis. Arthritis Rheumatol. 2014;66(4):841–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gomes MM, Herr AB. IgA and IgA-specific receptors in human disease: structural and functional insights into pathogenesis and therapeutic potential. Springer Semin Immunopathol. 2006;28(4):383–95. Springer

    Article  CAS  PubMed  Google Scholar 

  58. Cuvelier C, Barbatis C, Mielants H, De Vos M, Roels H, Veys E. Histopathology of intestinal inflammation related to reactive arthritis. Gut. 1987;28(4):394–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Demetter P, Baeten D, De Keyser F, De Vos M, Van Damme N, Verbruggen G, et al. Subclinical gut inflammation in spondyloarthropathy patients is associated with upregulation of the E-cadherin/catenin complex. Ann Rheum Dis. 2000;59(3):211–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hermiston ML, Gordon JI. Inflammatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin. Science. 1995;270(5239):1203–7.

    Article  CAS  PubMed  Google Scholar 

  61. Mielants H, De Vos M, Goemaere S, Schelstraete K, Cuvelier C, Goethals K, et al. Intestinal mucosal permeability in inflammatory rheumatic diseases. II Role of disease. J Rheumatol. 1991;18(3):394–400.

    CAS  PubMed  Google Scholar 

  62. Ciccia F, Accardo-Palumbo A, Rizzo A, Guggino G, Raimondo S, Giardina A, et al. Evidence that autophagy, but not the unfolded protein response, regulates the expression of IL-23 in the gut of patients with ankylosing spondylitis and subclinical gut inflammation. Ann Rheum Dis. 2014;73(8):1566–74.

    Article  CAS  PubMed  Google Scholar 

  63. Benjamin JL, Sumpter R Jr, Levine B, Hooper LV. Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host Microbe. 2013;13(6):723–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kaser A, Adolph TE, Blumberg RS. The unfolded protein response and gastrointestinal disease. Seminars in immunopathology. Cham: Springer; 2013.

    Google Scholar 

  65. Colbert RA, Tran TM, Layh-Schmitt G. HLA-B27 misfolding and ankylosing spondylitis. Mol Immunol. 2014;57(1):44–51.

    Article  CAS  PubMed  Google Scholar 

  66. Baeten D, Demetter P, Cuvelier CA, Kruithof E, Van Damme N, De Vos M, et al. Macrophages expressing the scavenger receptor CD163: a link between immune alterations of the gut and synovial inflammation in spondyloarthropathy. J Pathol. 2002;196(3):343–50.

    Article  CAS  PubMed  Google Scholar 

  67. Jacques P, Elewaut D. Joint expedition: linking gut inflammation to arthritis. Mucosal Immunol. 2008;1(5):364–71.

    Article  CAS  PubMed  Google Scholar 

  68. Hermann E, Mayet W-J, Poralla T, Zum Büschenfelde K-HM, Fleischer B. Salmonella-reactive synovial fluid T-cell clones in a patient with post-infectious Salmonella arthritis. Scand J Rheumatol. 1990;19(5):350–5.

    Article  CAS  PubMed  Google Scholar 

  69. Probst P, Hermann E, Fleischer B. Multiclonal synovial T cell response to Yersinia enterocolitica in reactive arthritis: the Yersinia 61-kDa heat-shock protein is not the major target antigen. J Infect Dis. 1993;167(2):385–91.

    Article  CAS  PubMed  Google Scholar 

  70. Geczy A, Alexander K, Bashir HV, Edmonds JJN. A factor (s) in Klebsiella culture filtrates specifically modifjies an HLA-B27-associated cell-surface component. Nature. 1980;283(5749):782–4.

    Article  CAS  PubMed  Google Scholar 

  71. Van Bohemen CG, Grumet F, Zanen HJI. Identification of HLA-B27M1 and-M2 cross-reactive antigens in Klebsiella. Shigella and Yersinia. 1984;52(4):607.

    Google Scholar 

  72. Schwimmbeck PL, Oldstone MB. Molecular mimicry between human leukocyte antigen B27 and klebsiella: consequences for spondyloarthropathies. Am J Med. 1988;85(6):51–3.

    Article  CAS  PubMed  Google Scholar 

  73. Scofield R, Warren W, Koelsch G, Harley JB. A hypothesis for the HLA-B27 immune dysregulation in spondyloarthropathy: contributions from enteric organisms, B27 structure, peptides bound by B27, and convergent evolution. Proc Natl Acad Sci USA. 1993;90(20):9330–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Penttinen MA, Heiskanen KM, Mohapatra R, DeLay ML, Colbert RA, Sistonen L, et al. Enhanced intracellular replication of Salmonella enteritidis in HLA–B27–expressing human monocytic cells: dependency on glutamic acid at position 45 in the B pocket of HLA–B27. Arthritis Rheum. 2004;50(7):2255–63.

    Article  CAS  PubMed  Google Scholar 

  75. Stagg A, Breban M, Hammer RE, Knight S, Taurog JD. Defective dendritic cell (DC) function in a HLA-B27 transgenic rat model of spondyloarthropathy (SpA). In: Dendritic cells in fundamental and clinical immunology. Cham: Springer; 1995. p. 557–9.

    Chapter  Google Scholar 

  76. Ge S, He Q, Granfors KJPO. HLA-B27 modulates intracellular growth of Salmonella pathogenicity island 2 mutants and production of cytokines in infected monocytic U937 cells. PLoS One. 2012;7(3):e34093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Huttenhower C, Kostic AD, Xavier RJ. Inflammatory bowel disease as a model for translating the microbiome. Immunity. 2014;40(6):843–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Goto Y, Panea C, Nakato G, Cebula A, Lee C, Diez MG, et al. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity. 2014;40(4):594–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schulz SM, Köhler G, Holscher C, Iwakura Y, Alber G. IL-17A is produced by Th17, γδ T cells and other CD4− lymphocytes during infection with Salmonella enterica serovar Enteritidis and has a mild effect in bacterial clearance. Int Immunol. 2008;20(9):1129–38.

    Article  CAS  PubMed  Google Scholar 

  80. Ivanov II, de Llanos FR, Manel N, Yoshinaga K, Rifkin DB, Sartor RB, et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 2008;4(4):337–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Morton AM, Sefik E, Upadhyay R, Weissleder R, Benoist C, Mathis D. Endoscopic photoconversion reveals unexpectedly broad leukocyte trafficking to and from the gut. Proc Natl Acad Sci U S A. 2014;111(18):6696–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ciccia F, Bombardieri M, Principato A, Giardina A, Tripodo C, Porcasi R, et al. Overexpression of interleukin-23, but not interleukin-17, as an immunologic signature of subclinical intestinal inflammation in ankylosing spondylitis. Arthritis Rheum. 2009;60(4):955–65.

    Article  CAS  PubMed  Google Scholar 

  83. Uematsu S, Fujimoto K, Jang MH, Yang B-G, Jung Y-J, Nishiyama M, et al. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing toll-like receptor 5. Nat Immunol. 2008;9(7):769–76.

    Article  CAS  PubMed  Google Scholar 

  84. Hall JA, Bouladoux N, Sun CM, Wohlfert EA, Blank RB, Zhu Q, et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity. 2008;29(4):637–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Torchinsky MB, Garaude J, Martin AP, Blander JM. Innate immune recognition of infected apoptotic cells directs Th 17 cell differentiation. Nature. 2009;458(7234):78–82.

    Article  CAS  PubMed  Google Scholar 

  86. Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M, Onoue M, et al. ATP drives lamina propria TH 17 cell differentiation. Nature. 2008;455(7214):808–12.

    Article  CAS  PubMed  Google Scholar 

  87. Ciccia F, Accardo-Palumbo A, Alessandro R, Rizzo A, Principe S, Peralta S, et al. Interleukin-22 and interleukin-22–producing NKp44+ natural killer cells in subclinical gut inflammation in ankylosing spondylitis. Arthritis Rheum. 2012, 64(6):1869–78.

    Google Scholar 

  88. Esin S, Batoni G, Counoupas C, Stringaro A, Brancatisano FL, Colone M, et al. Direct binding of human NK cell natural cytotoxicity receptor NKp44 to the surfaces of mycobacteria and other bacteria. Infect Immun. 2008;76(4):1719–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Glatzer T, Killig M, Meisig J, Ommert I, Luetke-Eversloh M, Babic M, et al. RORγt+ innate lymphoid cells acquire a proinflammatory program upon engagement of the activating receptor NKp44. Immunity. 2013;38(6):1223–35.

    Article  CAS  PubMed  Google Scholar 

  90. Karimi K, Inman MD, Bienenstock J, Forsythe P. Lactobacillus reuteri–induced regulatory T cells protect against an allergic airway response in mice. Am J Respir Crit Care Med. 2009;179(3):186–93.

    Article  CAS  PubMed  Google Scholar 

  91. Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A. 2010;107(27):12204–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, et al. The Toll-like receptor pathway establishes commensal gut colonization. Science (New York, NY). 2011;332(6032):974.

    Article  CAS  Google Scholar 

  93. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331(6015):337–41.

    Article  CAS  PubMed  Google Scholar 

  94. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document: the international scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506.

    Article  PubMed  Google Scholar 

  95. Banik A, Halder SK, Ghosh C, Mondal KC. Fungal probiotics: opportunity, challenge, and prospects. Recent advancement in white biotechnology through fungi. Cham: Springer; 2019. p. 101–17.

    Book  Google Scholar 

  96. Singh N, Yadav H, Marotta F, Singh V. Probiotics-a probable therapeutic agent for spondyloarthropathy. Int J Probiotics Prebiotics. 2017;12(2):57.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Baharav E, Mor F, Halpern M, Weinberger A. Lactobacillus GG bacteria ameliorate arthritis in Lewis rats. J Nutr. 2004;134(8):1964–9.

    Article  CAS  PubMed  Google Scholar 

  98. Yan F, Polk DB. Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. J Biol Chem. 2002;277(52):50959–65.

    Article  CAS  PubMed  Google Scholar 

  99. Madsen K, Cornish A, Soper P, McKaigney C, Jijon H, Yachimec C, et al. Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology. 2001;121(3):580–91.

    Article  CAS  PubMed  Google Scholar 

  100. Bedaiwi MK, Inman RD. Microbiome and probiotics: link to arthritis. Curr Opin Rheumatol. 2014;26(4):410–5.

    Article  CAS  PubMed  Google Scholar 

  101. Jenks K, Stebbings S, Burton J, Schultz M, Herbison P, Highton J. Probiotic therapy for the treatment of spondyloarthritis: a randomized controlled trial. J Rheumatol. 2010;37(10):2118–25.

    Article  PubMed  Google Scholar 

  102. Brophy S, Burrows CL, Brooks C, Gravenor MB, Siebert S, Allen SJ. Internet-based randomised controlled trials for the evaluation of complementary and alternative medicines: probiotics in spondyloarthropathy. BMC Musculoskeletal Dis. 2008;9(1):4.

    Article  Google Scholar 

  103. Hoentjen F, Welling GW, Harmsen HJ, Zhang X, Snart J, Tannock GW, et al. Reduction of colitis by prebiotics in HLA-B27 transgenic rats is associated with microflora changes and immunomodulation. Inflamm Bowel Dis. 2005;11(11):977–85.

    Article  PubMed  Google Scholar 

  104. Castagnini C, Luceri C, Toti S, Bigagli E, Caderni G, Femia AP, et al. Reduction of colonic inflammation in HLA-B27 transgenic rats by feeding Marie Ménard apples, rich in polyphenols. Br J Nutr. 2009;102(11):1620–8.

    Article  CAS  PubMed  Google Scholar 

  105. Barber CE, Kim J, Inman RD, Esdaile JM, James MT. Antibiotics for treatment of reactive arthritis: a systematic review and metaanalysis. J Rheumatol. 2013;40(6):916–28.

    Article  CAS  PubMed  Google Scholar 

  106. Wortelboer K, Nieuwdorp M, Herrema H. Fecal microbiota transplantation beyond Clostridioides difficile infections. EBioMedicine. 2019;44:716–29.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Choi RY, Asquith M, Rosenbaum JT. Fecal transplants in spondyloarthritis and uveitis: ready for a clinical trial? Curr Opin Rheumatol. 2018;30(4):303–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Assadiasl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soleimanifar, N., Assadiasl, S. (2022). Spondyloarthropathies and Gut Microbiota. In: Nicknam, M.H. (eds) Ankylosing Spondylitis - Axial Spondyloarthritis. Springer, Singapore. https://doi.org/10.1007/978-981-16-4733-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4733-8_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4732-1

  • Online ISBN: 978-981-16-4733-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics