Skip to main content

Association of HLA and HLA-Related Genes with Ankylosing Spondylitis

  • Chapter
  • First Online:
Ankylosing Spondylitis - Axial Spondyloarthritis
  • 726 Accesses

Abstract

Major Histocompatibility Complex (MHC), firstly identified as the main factor determining the fate of organ transplantation, is involved in antigen presentation to T cells. Among the ever-increasing list of genes identified to be related to different autoimmune-inflammatory diseases, HLA loci have shown the strongest association. This is because of their role in antigen presentation to T lymphocytes and their involvement in the negative selection of auto-reactive thymocytes. One of the most striking associations between an autoimmune disorder and an HLA allele is for Ankylosing Spondylitis (AS) and HLA-B27. Several mechanisms have been proposed to explain how HLA-B27 can participate in the pathogenesis of AS. However, the association of other HLA loci and also HLA-related genes with AS has been evidenced. Epigenetics is another important player in the etiopathology of AS through affecting the expression of the genes involved in different physiologic and immunologic processes. In this chapter, we will explain the cutting-edge knowledge about the probable mechanisms through which, HLA-B27 plays a role in AS development. Then, we discuss other HLA and HLA-related genes shown to be associated with AS in different populations. At the end of the chapter, we describe the impact of epigenetics as another predisposing factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Colbert RA, et al. HLA-B27 misfolding and spondyloarthropathies. Prion. 2009;3(1):15–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Akassou A, Bakri Y. Does HLA-B27 status influence ankylosing spondylitis phenotype? Clin Med Insights: Arthritis and Musculoskeletal Disorders. 2018;11:1179544117751627.

    PubMed  PubMed Central  Google Scholar 

  3. Chen B, et al. Role of HLA-B27 in the pathogenesis of ankylosing spondylitis. Mol Med Rep. 2017;15(4):1943–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Breban M, et al. Revisiting MHC genes in spondyloarthritis. Curr Rheumatol Rep. 2015;17(6):40.

    Article  CAS  Google Scholar 

  5. Nicknam MH, et al. Determination of HLA-B27 subtypes in Iranian patients with ankylosing spondylitis. Iran J Allergy Asthma Immunol. 2008;7(1):19–24.

    CAS  PubMed  Google Scholar 

  6. Colbert RA, et al. From HLA-B27 to spondyloarthritis: a journey through the ER. Immunol Rev. 2010;233(1):181–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gran JT, Husby G. HLA-B27 and spondyloarthropathy: value for early diagnosis? J Med Genet. 1995;32(7):497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reveille JD. An update on the contribution of the MHC to as susceptibility. Clin Rheumatol. 2014;33(6):749–57.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nicknam M, et al. Association between HLA-B27 antigen and ankylosing spondylitis in Iranian patients. Hakim. 2005;8(1):29–34.

    Google Scholar 

  10. Nicknam M, et al. Comparison of val idity of microlymphocytotoxicity and flowcytometry methods with PCR for HLA-B27 antigen typing. Med J Islamic Republic Iran (MJIRI). 2003;17(1):75–9.

    Google Scholar 

  11. Brown M. Progress in studies of the genetics of ankylosing spondylitis. in clinical and experimental rheumatology. In: Clinical & exper rheumatology via santa maria, vol. 31. Italy: PISA; 2010. p. 56126.

    Google Scholar 

  12. Hanson A, Brown MA. Genetics and the causes of ankylosing spondylitis. Rheum Dis Clin. 2017;43(3):401–14.

    Article  Google Scholar 

  13. Burney R, et al. Analysis of the MHC class II encoded components of the HLA class I antigen processing pathway in ankylosing spondylitis. Ann Rheum Dis. 1994;53(1):58–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Colbert RA, Tran TM, Layh-Schmitt G. HLA-B27 misfolding and ankylosing spondylitis. Mol Immunol. 2014;57(1):44–51.

    Article  CAS  PubMed  Google Scholar 

  15. Ganjalikhani Hakemi M, et al. Optimization of human Th17 cell differentiation in vitro: evaluating different polarizing factors. In Vitro Cell Dev Biol Animal. 2011;47(8):581.

    Article  Google Scholar 

  16. Ringrose J. HLA-B27 associated spondyloarthropathy, an autoimmune disease based on crossreactivity between bacteria and HLA-B27? Ann Rheum Dis. 1999;58(10):598–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Robinson PC, Brown MA. Genetics of ankylosing spondylitis. Mol Immunol. 2014;57(1):2–11.

    Article  CAS  PubMed  Google Scholar 

  18. Mahmoudi M, et al. New insights toward the pathogenesis of ankylosing spondylitis; genetic variations and epigenetic modifications. Mod Rheumatol. 2017;27(2):198–209.

    Article  PubMed  Google Scholar 

  19. Fechtenbaum M, et al. MICA and NKG2D variants as risk factors in spondyloarthritis: a case–control study. Genes Immun. 2019;20:599–605.

    Article  CAS  PubMed  Google Scholar 

  20. O’rielly DD, Uddin M, Rahman P. Ankylosing spondylitis: beyond genome-wide association studies. Curr Opin Rheumatol. 2016;28(4):337–45.

    Article  PubMed  CAS  Google Scholar 

  21. Tsui FW, et al. The genetic basis of ankylosing spondylitis: new insights into disease pathogenesis. Appl Clin Genet. 2014;7:105.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Qian Y, et al. Genetic association between TAP1 and TAP2 polymorphisms and ankylosing spondylitis: a systematic review and meta-analysis. Inflamm Res. 2017;66(8):653–61.

    Article  CAS  PubMed  Google Scholar 

  23. Feng M, et al. TAP1 and TAP2 polymorphisms associated with ankylosing spondylitis in genetically homogenous Chinese Han population. Hum Immunol. 2009;70(4):257–61.

    Article  CAS  PubMed  Google Scholar 

  24. Agrawal N, Brown M. Genetic associations and functional characterization of M1 aminopeptidases and immune-mediated diseases. Genes Immun. 2014;15(8):521.

    Article  CAS  PubMed  Google Scholar 

  25. Alvarez-Navarro C, de Castro JAL. ERAP1 structure, function and pathogenetic role in ankylosing spondylitis and other MHC-associated diseases. Mol Immunol. 2014;57(1):12–21.

    Article  CAS  PubMed  Google Scholar 

  26. Zhai J, et al. Immunogenetic study in Chinese population with ankylosing spondylitis: are there specific genes recently disclosed? Clin Dev Immunol. 2013;2013:419357.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. de Castro JAL. How ERAP1 and ERAP2 shape the peptidomes of disease-associated MHC-I proteins. Front Immunol. 2018;9:2463.

    Article  CAS  Google Scholar 

  28. Driscoll J, et al. MHC-linked LMP gene products specifically alter peptidase activities of the proteasome. Nature. 1993;365(6443):262.

    Article  CAS  PubMed  Google Scholar 

  29. Gaczynska M, Rock KL, Goldberg AL. γ-Interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature. 1993;365(6443):264.

    Article  CAS  PubMed  Google Scholar 

  30. Westman P, et al. TAP1 and TAP2 polymorphism in HLA-B27-positive subpopulations: no allelic differences in ankylosing spondylitis and reactive arthritis. Hum Immunol. 1995;44(4):236–42.

    Article  CAS  PubMed  Google Scholar 

  31. Soleimanifar N, et al. Effect of food intake and ambient air pollution exposure on ankylosing spondylitis disease activity. Adv Rheumatol. 2019;59(1):9.

    Article  PubMed  Google Scholar 

  32. Roberts S, et al. Epigenetics of osteoarticular diseases: recent developments. Rheumatol Int. 2015;35(8):1293–305.

    Article  CAS  PubMed  Google Scholar 

  33. Lai N-S, et al. Association between cytokines and methylation of SOCS-1 in serum of patients with ankylosing spondylitis. Mol Biol Rep. 2014;41(6):3773–80.

    Article  CAS  PubMed  Google Scholar 

  34. Aslani S, et al. Evaluation of DNMT1 gene expression profile and methylation of its promoter region in patients with ankylosing spondylitis. Clin Rheumatol. 2016;35(11):2723–31.

    Article  PubMed  Google Scholar 

  35. Karami J, et al. Promoter hypermethylation of BCL11B gene correlates with downregulation of gene transcription in ankylosing spondylitis patients. Genes Immun. 2017;18(3):170.

    Article  CAS  PubMed  Google Scholar 

  36. Hao J, et al. Genome-wide DNA methylation profile analysis identifies differentially methylated loci associated with ankylosis spondylitis. Arthritis Res Ther. 2017;19(1):177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Mohammadi H, et al. MicroRNA implications in the etiopathogenesis of ankylosing spondylitis. J Cell Physiol. 2018;233(8):5564–73.

    Article  CAS  PubMed  Google Scholar 

  38. Perez-Sanchez C, et al. Circulating microRNAs as potential biomarkers of disease activity and structural damage in ankylosing spondylitis patients. Hum Mol Genet. 2018;27(5):875–90.

    Article  CAS  PubMed  Google Scholar 

  39. Li Z, et al. The role of MicroRNAS in ankylosing spondylitis. Medicine. 2016;95(14):e3325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang M, et al. Overexpression of miR-31 in peripheral blood mononuclear cells (PBMC) from patients with ankylosing spondylitis. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 2017;23:5488.

    Article  CAS  Google Scholar 

  41. Yang L, et al. miRNA copy number variants confer susceptibility to acute anterior uveitis with or without ankylosing spondylitis. Invest Ophthalmol Vis Sci. 2017;58(4):1991–2001.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazdak Ganjalikhani Hakemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ganjalikhani Hakemi, M. (2022). Association of HLA and HLA-Related Genes with Ankylosing Spondylitis. In: Nicknam, M.H. (eds) Ankylosing Spondylitis - Axial Spondyloarthritis. Springer, Singapore. https://doi.org/10.1007/978-981-16-4733-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4733-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4732-1

  • Online ISBN: 978-981-16-4733-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics