Skip to main content

Phased-Mode Spoof Surface Plasmon Polaritons Antenna

  • Chapter
  • First Online:
Spoof Surface Plasmon Polaritons Antenna

Part of the book series: Modern Antenna ((MA))

  • 480 Accesses

Abstract

Harrington has proved that the maximum directivity coefficient D of a source region is a function of the number of multipole modes N (Dmax = N2 + 2N) (Harrington in IRE Trans. Antennas Propag. 6:219, 1958; Harrington in J. Res. Natl. Bur. Stand. 64D:1, 1960). Theoretically, the larger the N is, the larger the directional coefficient D is, and the stronger the super directional needle radiation is. When the electric and magnetic dipoles are excited with equal amplitude and equal phase, the pattern is the heart shape in the electric and magnetic fields. The forward radiation is enhanced and the backward radiation is obviously suppressed. This structure is often called Huygens source. This kind of magnetoelectric orthogonal radiation element can obtain higher directional radiation gain. On the one hand, it preliminarily proves the correctness of Harritung’s theory. On the other hand, it also shows that multiple modes can share the same aperture, and multiple modes can be superimposed with each other to form a comprehensive mode with shared aperture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.F. Harrington, On the gain and beamwidth of directional antennas. IRE Trans. Antennas Propag. 6, 219 (1958)

    Article  Google Scholar 

  2. R.F. Harrington, Effect of antenna size on gain, bandwidth, and efficiency. J. Res. Natl. Bur. Stand. 64D, 1 (1960)

    MATH  Google Scholar 

  3. K. Wang et al., in Pattern Reconfigurable Antenna Applying Spoof Surface Plasmon Polaritons. 2019 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, 2019, pp. 1–2

    Google Scholar 

  4. Y. Pang et al., Spatial k-dispersion engineering of spoof surface plasmon polaritons for customized absorption. Sci. Rep. 6 (Art. no. 29429) (2016)

    Google Scholar 

  5. R.K. Jaiswal, N. Pandit, N.P. Pathak, Amplification of propagating spoof surface plasmon polaritons in ring resonator-based filtering structure. IEEE Trans. Plasma Sci. 48(9), 3253–3260 (2020)

    Article  Google Scholar 

  6. X. Shena, T.J. Cui, D. Martin-Canob, J.F. Garcia-Vidal, Conformal surface plasmons propagating on ultrathin and flexible films. Proc. Nat. Acad. Sci. USA 110(1), 40–45 (2013)

    Article  Google Scholar 

  7. X. Zhang, J. Fan, J. Chen, High gain and high-efficiency millimeter-wave antenna based on spoof surface plasmon polaritons. IEEE Trans. Antennas Prop. 67(1), 687–691 (2019)

    Article  Google Scholar 

  8. Y. Fan et al., Frequency scanning radiation by decoupling spoof surface plasmon polaritons via phase gradient metasurface. IEEE Trans. Antennas Propag. 66(1), 203–208 (2018)

    Article  Google Scholar 

  9. G.S. Kong, H.F. Ma, B.G. Cai, T.J. Cui, Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide. Sci. Rep. 6 (Art. no. 29600) (2016)

    Google Scholar 

  10. S. Li, Q. Zhang, Z. Xu, H. Zhao, X. Yin, Phase transforming based on asymmetric spoof surface plasmon polariton for endfire antenna with sum and difference beams. IEEE Trans. Antennas Propag. 68(9), 6602–6613 (2020)

    Article  Google Scholar 

  11. C. Wang et al., Frequency-selective structure with transmission and scattering deflection based on spoof surface plasmon polariton modes. IEEE Trans. Antennas Propag. 67(10), 6508–6514 (2019)

    Article  Google Scholar 

  12. Y. Li et al., Wideband polarization conversion with the synergy of waveguide and spoof surface plasmon polariton modes. Phys. Rev. Appl. 10(6) (Art. no. 064002) (2018)

    Google Scholar 

  13. Z. Chen, W. Lu, Z. Liu, A. Zhang, B. Wu, H. Chen, Dynamically tunable integrated device for attenuation, amplification, and transmission of SSPP using grapheme. IEEE Trans. Antennas Propag. 68(5), 3953–3962 (2020)

    Article  Google Scholar 

  14. A. Zhang, W. Lu, Z. Liu, B. Wu, H. Chen, Flexible and dynamically tunable attenuator based on spoof surface plasmon polaritons waveguide loaded with grapheme. IEEE Trans. Antennas Propag. 67(8), 5582–5589 (2019)

    Article  Google Scholar 

  15. Y. Han, J. Wang, S. Gong, Y. Li, Y. Zhang, J. Zhang, Low RCS antennas based on dispersion engineering of spoof surface plasmon polaritons. IEEE Trans. Antennas Propag. 66(12), 7111–7116 (2018)

    Article  Google Scholar 

  16. K. Zhuang et al., Pattern reconfigurable antenna applying spoof surface plasmon polaritons for wide angle beam steering. IEEE Access 7, 15444–15451 (2019)

    Article  Google Scholar 

  17. J. Zhang, J. Geng, H. Zhou, C. Ren, K. Wang, S. Yang, W. Gao, E. Liu, X. Cheng, C. He, X. Liang, R. Jin, Dual-port phase antenna and its application in 1-D arrays to 2-D scanning. IEEE Trans. Antennas Propag. (2021). https://doi.org/10.1109/TAP.2021.3076558

    Article  Google Scholar 

  18. H. Chen et al., Wideband frequency scanning spoof surface plasmon polariton planar antenna based on transmissive phase gradient metasurface. IEEE Antennas Wirel. Propag. Lett. 17(3), 463–467 (2018)

    Article  Google Scholar 

  19. E. Liu, J. Geng et al., Generalized principle of pattern multiplication based on the phase antenna element. Proc. IEEE AP-S Soc. Int. Symp. 353–354 (2020)

    Google Scholar 

  20. S. Xu et al., A Wide-angle narrowband leaky-wave antenna based on substrate integrated waveguide-spoof surface plasmon polariton structure. IEEE Antennas Wirel. Propag. Lett. 18(7), 1386–1389 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junping Geng .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Geng, J., Zhang, J., Wang, K. (2022). Phased-Mode Spoof Surface Plasmon Polaritons Antenna. In: Spoof Surface Plasmon Polaritons Antenna. Modern Antenna. Springer, Singapore. https://doi.org/10.1007/978-981-16-4721-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4721-5_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4720-8

  • Online ISBN: 978-981-16-4721-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics