Skip to main content

Three Dimensional (3D) Printable Gel-Inks for Skin Tissue Regeneration

  • Chapter
  • First Online:
3D printable Gel-inks for Tissue Engineering

Abstract

Recent and rapid progression in three-dimensional (3D) printing techniques has revolutionized conventional therapies in medicine; 3D printed constructs are gradually being recognized as common substitutes for the replacement of skin wounds. As gel-inks, large numbers of natural and synthetic (e.g., collagen and polyurethane, respectively) substances were used to be printed into different shapes and sizes for managing both acute and chronic skin wounds. The resultant 3D printed scaffolds not only provide physical support but also act as supporting niches for improving immunomodulation and vascularization and subsequent accelerated wound healing. Recently, the use of thermosensitive and pH-responsive gels has made it possible to prepare 3D printed constructs with the ability to facilitate in situ crosslinking within the biopolymer and with native wound edge tissue as well as to fill the exact shape of wound damage. In this chapter, we aim to introduce the current state of 3D printable gel-inks utilized for skin wound treatment and illustrate future prospects in this amazing area of science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boyce ST (2001) Design principles for composition and performance of cultured skin substitutes. Burns 27(5):523–533

    Article  CAS  Google Scholar 

  2. Tobin DJ (2006) Biochemistry of human skin—our brain on the outside. Chem Soc Rev 35(1):52–67

    Article  CAS  Google Scholar 

  3. Parenteau NL et al (1992) The organotypic culture of human skin keratinocytes and fibroblasts to achieve form and function. Cytotechnology 9(1–3):163–171

    Article  CAS  Google Scholar 

  4. Supp DM, Boyce ST (2005) Engineered skin substitutes: practices and potentials. Clin Dermatol 23(4):403–412

    Article  Google Scholar 

  5. Groeber F et al (2011) Skin tissue engineering—in vivo and in vitro applications. Adv Drug Deliv Rev 63(4–5):352–366

    Article  CAS  Google Scholar 

  6. Shevchenko RV, James SL, James SE (2010) A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 7(43):229–258

    Article  CAS  Google Scholar 

  7. Volk SW, Iqbal SA, Bayat A (2013) Interactions of the extracellular matrix and progenitor cells in cutaneous wound healing. Adv Wound Care 2(6):261–272

    Article  Google Scholar 

  8. Pereira RF et al (2017) Advances in bioprinted cell-laden hydrogels for skin tissue engineering. Biomanufacturing Reviews 2(1):1

    Article  Google Scholar 

  9. Ennis WJ, Hill D (2016) Wound healing: a comprehensive wound assessment and treatment approach. Skin Tissue Eng Regen Med 239:75–81

    Google Scholar 

  10. Gaur M, Dobke M, Lunyak VV (2017) Mesenchymal stem cells from adipose tissue in clinical applications for dermatological indications and skin aging. Int J Mol Sci 18(1):208

    Article  CAS  Google Scholar 

  11. McGrath J, Eady R, Pope F (2004) Anatomy and organization of human skin. Rook’s Textb Dermatol 1:3.2–3.80

    Google Scholar 

  12. Weinstein GD, McCullough JL, Ross P (1984) Cell proliferation in normal epidermis. J Invest Dermatol 82(6):623–628

    Google Scholar 

  13. Steinhoff M, Brzoska T, Luger TA (2001) Keratinocytes in epidermal immune responses. Curr Opin Allergy Clin Immunol 1(5):469–476

    CAS  Google Scholar 

  14. Visscher M, Narendran V (2014) Neonatal infant skin: development, structure and function. Newborn Infant Nurs Rev 14(4):135–141

    Article  Google Scholar 

  15. Cichorek M et al (2013) Skin melanocytes: biology and development. Adv Dermatol Allergol/Postȩpy Dermatologii I Alergologii 30(1):30

    Article  Google Scholar 

  16. Johnson J et al (2005) P53 family activities in development and cancer: relationship to melanocyte and keratinocyte carcinogenesis. J Investig Dermatol 125(5):857–864

    Article  CAS  Google Scholar 

  17. Nguyen D, Orgill D, Murphy G (2009) The pathophysiologic basis for wound healing and cutaneous regeneration. Biomaterials for treating skin loss. Elsevier, pp 25–57

    Chapter  Google Scholar 

  18. Fenner J, Clark R (2016) Anatomy, physiology, histology, and immunohistochemistry of human skin. In: Skin tissue engineering and regenerative medicine, vol 1

    Google Scholar 

  19. Bhattacharjee O et al (2019) Unraveling the ECM-immune cell crosstalk in skin diseases. Front Cell Dev Biol 7:00068

    Google Scholar 

  20. Reed CC, Iozzo RV (2002) The role of decorin in collagen fibrillogenesis and skin homeostasis. Glycoconj J 19(4–5):249–255

    Article  CAS  Google Scholar 

  21. Oxlund H, Manschot J, Viidik A (1988) The role of elastin in the mechanical properties of skin. J Biomech 21(3):213–218

    Article  CAS  Google Scholar 

  22. Nyman E et al (2013) Hyaluronic acid, an important factor in the wound healing properties of amniotic fluid: in vitro studies of re-epithelialisation in human skin wounds. J Plast Surg Hand Surg 47(2):89–92

    Article  Google Scholar 

  23. Gallo RL et al (2015) The potential role of topically applied heparan sulfate in the treatment of photodamage. J Drugs Dermatol 14(7):669–674

    CAS  Google Scholar 

  24. Olivieri J, Smaldone S, Ramirez F (2010) Fibrillin assemblies: extracellular determinants of tissue formation and fibrosis. Fibrogenesis Tissue Repair 3(1):24

    Article  CAS  Google Scholar 

  25. Fyrand O (1979) Studies on fibronectin in the skin. Arch Dermatol Res 266(1):33–41

    Article  CAS  Google Scholar 

  26. Johnson MB et al (2017) Topical fibronectin improves wound healing of irradiated skin. Sci Rep 7(1):1–10

    Article  CAS  Google Scholar 

  27. Nishiyama T et al (2000) The importance of laminin 5 in the dermal–epidermal basement membrane. J Dermatol Sci 24:S51–S59

    Article  CAS  Google Scholar 

  28. Iorio V, Troughton LD, Hamill KJ (2015) Laminins: roles and utility in wound repair. Adv Wound Care 4(4):250–263

    Article  Google Scholar 

  29. Duda DG et al (2007) A protocol for phenotypic detection and enumeration of circulating endothelial cells and circulating progenitor cells in human blood. Nat Protoc 2(4):805

    Article  CAS  Google Scholar 

  30. Erickson JR, Echeverri K (2018) Learning from regeneration research organisms: the circuitous road to scar free wound healing. Dev Biol 433(2):144–154

    Article  CAS  Google Scholar 

  31. Gurtner GC et al (2008) Wound repair and regeneration. Nature 453(7193):314–321

    Article  CAS  Google Scholar 

  32. Marikovsky M et al (1993) Appearance of heparin-binding EGF-like growth factor in wound fluid as a response to injury. Proc Natl Acad Sci USA 90(9):3889–3893

    Article  CAS  Google Scholar 

  33. Werner S et al (1992) Differential splicing in the extracellular region of fibroblast growth factor receptor 1 generates receptor variants with different ligand-binding specificities. Mol Cell Biol 12(1):82–88

    CAS  Google Scholar 

  34. Eriksson A et al (1992) PDGF alpha- and beta-receptors activate unique and common signal transduction pathways. Embo j 11(2):543–550

    Article  CAS  Google Scholar 

  35. Rappolee DA et al (1988) Wound macrophages express TGF-alpha and other growth factors in vivo: analysis by mRNA phenotyping. Science 241(4866):708–712

    Article  CAS  Google Scholar 

  36. Losi P et al (2013) Fibrin-based scaffold incorporating VEGF-and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta Biomater 9(8):7814–7821

    Article  CAS  Google Scholar 

  37. Schmitt S et al (2013) Stathmin regulates keratinocyte proliferation and migration during cutaneous regeneration. PLoS One 8(9):e75075

    Google Scholar 

  38. Bevan D et al (2004) Diverse and potent activities of HGF/SF in skin wound repair. J Pathol 203(3):831–838

    Article  CAS  Google Scholar 

  39. Jackson WM, Nesti LJ, Tuan RS (2012) Mesenchymal stem cell therapy for attenuation of scar formation during wound healing. Stem Cell Res Ther 3(3):20

    Article  Google Scholar 

  40. Madlener M et al (1996) Regulation of the expression of stromelysin-2 by growth factors in keratinocytes: implications for normal and impaired wound healing. Biochem J 320(2):659–664

    Google Scholar 

  41. Frank S, Madlener M, Werner S (1996) Transforming growth factors beta1, beta2, and beta3 and their receptors are differentially regulated during normal and impaired wound healing. J Biol Chem 271(17):10188–10193

    Article  CAS  Google Scholar 

  42. Hübner G et al (1996) Differential regulation of pro-inflammatory cytokines during wound healing in normal and glucocorticoid-treated mice. Cytokine 8(7):548–556

    Article  Google Scholar 

  43. Salmon-Ehr V et al (2000) Implication of interleukin-4 in wound healing. Lab Invest 80(8):1337–1343

    Article  CAS  Google Scholar 

  44. Mattey DL (1997) Interleukin-4 induces myofibroblast differentiation is synovial fibroblasts. Biochem Soc Trans 25(2):290s

    Article  CAS  Google Scholar 

  45. Peranteau WH et al (2008) IL-10 overexpression decreases inflammatory mediators and promotes regenerative healing in an adult model of scar formation. J Invest Dermatol 128(7):1852–1860

    Article  CAS  Google Scholar 

  46. Krishnamurthy P et al (2011) Interleukin-10 deficiency impairs bone marrow-derived endothelial progenitor cell survival and function in ischemic myocardium. Circ Res 109(11):1280–1289

    Article  CAS  Google Scholar 

  47. King A et al (2014) Regenerative Wound Healing: The Role of Interleukin-10. Adv Wound Care (New Rochelle) 3(4):315–323

    Article  Google Scholar 

  48. Matias MA et al (2011) Accelerated wound healing phenotype in Interleukin 12/23 deficient mice. J Inflamm (Lond) 8:39

    Article  CAS  Google Scholar 

  49. Clark RA (2014) Wound repair: basic biology to tissue engineering. Principles of tissue engineering. Elsevier, pp 1595–1617

    Chapter  Google Scholar 

  50. Schultz GS, Wysocki A (2009) Interactions between extracellular matrix and growth factors in wound healing. Wound repair and regeneration 17(2):153–162

    Article  Google Scholar 

  51. Wu Y, Tredget E (2014) Pathology of tissue regeneration repair: skin regeneration pp 558–566

    Google Scholar 

  52. Babu PS, Danilovich N, Sairam M (2001) Hormone-induced receptor gene splicing: enhanced expression of the growth factor type I follicle-stimulating hormone receptor motif in the developing mouse ovary as a new paradigm in growth regulation. Endocrinology 142(1):381–389

    Article  CAS  Google Scholar 

  53. Levy V et al (2007) Epidermal stem cells arise from the hair follicle after wounding. FASEB J 21(7):1358–1366

    Article  CAS  Google Scholar 

  54. Ito M et al (2005) Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11(12):1351–1354

    Article  CAS  Google Scholar 

  55. Brodsky S et al (2001) Plasmin-dependent and-independent effects of plasminogen activators and inhibitor-1 on ex vivo angiogenesis. Am J Physiol-Heart Circulatory Physiol 281(4):H1784–H1792

    Article  CAS  Google Scholar 

  56. Velnar T, Bailey T, Smrkolj V (2009) The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 37(5):1528–1542

    Article  CAS  Google Scholar 

  57. Diegelman R, Evans M (2004) Wound healing: an overview of acute, fibrotic and delayed. Front Biosci 9:283–289

    Google Scholar 

  58. Madden JW, Peacock EE Jr (1971) Studies on the biology of collagen during wound healing. 3. Dynamic metabolism of scar collagen and remodeling of dermal wounds. Ann Surgery 174(3):511–520

    Google Scholar 

  59. Hinz B (2016) The role of myofibroblasts in wound healing. Curr Res Transl Med 64(4):171–177

    Article  CAS  Google Scholar 

  60. Guo SA, DiPietro LA (2010) Factors affecting wound healing. J Dental Res 89(3):219–229

    Google Scholar 

  61. Menke NB et al (2007) Impaired wound healing. Clin Dermatol 25(1):19–25

    Article  Google Scholar 

  62. Moseley R et al (2004) Comparison of oxidative stress biomarker profiles between acute and chronic wound environments. Wound Repair Regener 12(4):419–429

    Article  Google Scholar 

  63. Herrick S et al (1992) Sequential changes in histologic pattern and extracellular matrix deposition during the healing of chronic venous ulcers. Am J Pathol 141(5):1085

    CAS  Google Scholar 

  64. Halim AS, Khoo TL, Yussof SJM (2010) Biologic and synthetic skin substitutes: an overview. Indian J Plast Surgery: Off Publ Assoc Plast Surgeons India 43(Suppl):S23

    Article  Google Scholar 

  65. Shores JT, Gabriel A, Gupta S (2007) Skin substitutes and alternatives: a review. Adv Skin Wound Care 20(9):493–508

    Article  Google Scholar 

  66. Böttcher-Haberzeth S, Biedermann T, Reichmann E (2010) Tissue engineering of skin. Burns 36(4):450–460

    Article  Google Scholar 

  67. Zweifel C et al (2008) Initial experiences using non-cultured autologous keratinocyte suspension for burn wound closure. J Plast Reconstr Aesthet Surg 61(11):e1–e4

    Article  CAS  Google Scholar 

  68. Gravante G et al (2007) A randomized trial comparing ReCell® system of epidermal cells delivery versus classic skin grafts for the treatment of deep partial thickness burns. Burns 33(8):966–972

    Article  CAS  Google Scholar 

  69. Philandrianos C et al (2012) Comparison of five dermal substitutes in full-thickness skin wound healing in a porcine model. Burns 38(6):820–829

    Article  Google Scholar 

  70. van der Veen VC et al (2011) New dermal substitutes. Wound Repair Regener 19:s59–s65

    Article  Google Scholar 

  71. Milan PB et al (2016) Accelerated wound healing in a diabetic rat model using decellularized dermal matrix and human umbilical cord perivascular cells. Acta Biomater 45:234–246

    Article  CAS  Google Scholar 

  72. Van der Veen VC et al (2010) Biological background of dermal substitutes. Burns 36(3):305–321

    Article  Google Scholar 

  73. Hansen SL et al (2001) Using skin replacement products to treat burns and wounds. Adv Skin Wound Care 14(1):37–46

    Article  CAS  Google Scholar 

  74. Pham C et al (2007) Bioengineered skin substitutes for the management of burns: a systematic review. Burns 33(8):946–957

    Article  Google Scholar 

  75. Bártolo PJ et al (2011) Biofabrication strategies for tissue engineering. Advances on Modeling in Tissue Engineering. Springer, pp 137–176

    Chapter  Google Scholar 

  76. Nichol JW, Khademhosseini A (2009) Modular tissue engineering: engineering biological tissues from the bottom up. Soft Matter 5(7):1312–1319

    Article  CAS  Google Scholar 

  77. Du Y et al (2008) Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc Natl Acad Sci 105(28):9522–9527

    Article  Google Scholar 

  78. Khademhosseini A et al (2006) Microscale technologies for tissue engineering and biology. Proc Natl Acad Sci 103(8):2480–2487

    Article  CAS  Google Scholar 

  79. Bartolo P et al (2012) Biomedical production of implants by additive electro-chemical and physical processes. CIRP Ann 61(2):635–655

    Article  Google Scholar 

  80. Bártolo P et al (2009) Biomanufacturing for tissue engineering: present and future trends. Virtual Phys Prototyping 4(4):203–216

    Article  Google Scholar 

  81. Melchels FP et al (2012) Additive manufacturing of tissues and organs. Prog Polym Sci 37(8):1079–1104

    Article  CAS  Google Scholar 

  82. Guillotin B, Guillemot F (2011) Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol 29(4):183–190

    Article  CAS  Google Scholar 

  83. Jakab K et al (2004) Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc Natl Acad Sci 101(9):2864–2869

    Article  CAS  Google Scholar 

  84. Censi R et al (2012) Hydrogels for protein delivery in tissue engineering. J Control Release 161(2):680–692

    Article  CAS  Google Scholar 

  85. de Amorim Almeida H, da Silva Bártolo PJ (2010) Virtual topological optimisation of scaffolds for rapid prototyping. Med Eng Phys 32(7):775–782

    Google Scholar 

  86. Hosseinkhani H et al (2006) Enhanced angiogenesis through controlled release of basic fibroblast growth factor from peptide amphiphile for tissue regeneration. Biomaterials 27(34):5836–5844

    Article  CAS  Google Scholar 

  87. Mohamed A, Xing MM (2012) Nanomaterials and nanotechnology for skin tissue engineering. Int J Burns Trauma 2(1):29

    CAS  Google Scholar 

  88. Smith L, Ma P (2004) Nano-fibrous scaffolds for tissue engineering. Colloids Surf B 39(3):125–131

    Article  CAS  Google Scholar 

  89. Zhong S, Zhang Y, Lim C (2010) Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdisc Rev: Nanomed Nanobiotechnol 2(5):510–525

    CAS  Google Scholar 

  90. Chandrasekaran AR et al (2011) Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration. Biomed Mater 6(1):015001

    Google Scholar 

  91. Nazarnezhada S et al (2020) Alginate hydrogel containing hydrogen sulfide as the functional wound dressing material: in vitro and in vivo study. Int J Biol Macromol 164:3323–3331

    Article  CAS  Google Scholar 

  92. Heunis T, Dicks L (2010) Nanofibers offer alternative ways to the treatment of skin infections. J Biomed Biotechnol 2010:510682

    Google Scholar 

  93. Ranjbar Mohammadi M et al (2020) An excellent nanofibrous matrix based on gum tragacanth-poly (Ɛ-caprolactone)-poly (vinyl alcohol) for application in diabetic wound healing. Polym Degradat Stab 174:109105

    Google Scholar 

  94. Salehi M et al (2020) Porous electrospun poly(ε-caprolactone)/gelatin nanofibrous mat containing cinnamon for wound healing application: in vitro and in vivo study. Biomed Eng Lett 10(1):149–161

    Article  Google Scholar 

  95. Zahedi P et al (2010) A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol 21(2):77–95

    Article  CAS  Google Scholar 

  96. Mitchella GR, Ahnb K-H, Davisb FJ (2011) The potential of electrospinning in rapid manufacturing processes. Virtual and Physical Prototyping 6(2):63–77

    Google Scholar 

  97. Cunha C, Panseri S, Antonini S (2011) Emerging nanotechnology approaches in tissue engineering for peripheral nerve regeneration. Nanomed: Nanotechnol Biol Med 7(1):50–59

    Google Scholar 

  98. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347

    Article  CAS  Google Scholar 

  99. Lee JKY et al (2018) Polymer-based composites by electrospinning: Preparation & functionalization with nanocarbons. Prog Polym Sci 86:40–84

    Article  CAS  Google Scholar 

  100. Zhang Y et al (2007) Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers. Int J Nanomed 2(4):623

    CAS  Google Scholar 

  101. Dhandayuthapani B, Krishnan UM, Sethuraman S (2010) Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. J Biomed Mater Res B Appl Biomater 94(1):264–272

    Google Scholar 

  102. Powell H, Boyce S (2008) Fiber density of electrospun gelatin scaffolds regulates morphogenesis of dermal–epidermal skin substitutes. J Biomed Mater Res Part A: Offl J Soc Biomater Japanese Soc Biomater Austr Soc Biomater Korean Soc Biomater 84(4):1078–1086

    Article  CAS  Google Scholar 

  103. Cui W et al (2009) Evaluation of electrospun fibrous scaffolds of poly (dl-lactide) and poly (ethylene glycol) for skin tissue engineering. Mater Sci Eng C 29(6):1869–1876

    Article  CAS  Google Scholar 

  104. Kumbar SG et al (2008) Electrospun poly (lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials 29(30):4100–4107

    Article  CAS  Google Scholar 

  105. Chen H et al (2011) Electrospun chitosan-graft-poly (ɛ-caprolactone)/poly (ɛ-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering. Int J Biol Macromol 48(1):13–19

    Article  CAS  Google Scholar 

  106. Zhou Y et al (2008) Electrospun water-soluble carboxyethyl chitosan/poly (vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromol 9(1):349–354

    Article  CAS  Google Scholar 

  107. Nazarnezhad S et al (2020) Electrospun nanofibers for improved angiogenesis: promises for tissue engineering applications. Nanomaterials 10(8):1609

    Article  CAS  Google Scholar 

  108. Yildirimer L, Thanh NT, Seifalian AM (2012) Skin regeneration scaffolds: a multimodal bottom-up approach. Trends Biotechnol 30(12):638–648

    Article  CAS  Google Scholar 

  109. Choi JS, Leong KW, Yoo HS (2008) In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Biomaterials 29(5):587–596

    Article  CAS  Google Scholar 

  110. Yang Y et al (2011) Promotion of skin regeneration in diabetic rats by electrospun core-sheath fibers loaded with basic fibroblast growth factor. Biomaterials 32(18):4243–4254

    Article  CAS  Google Scholar 

  111. Shalumon K et al (2011) Sodium alginate/poly (vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings. Int J Biol Macromol 49(3):247–254

    Article  CAS  Google Scholar 

  112. Suganya S et al (2011) Herbal drug incorporated antibacterial nanofibrous mat fabricated by electrospinning: an excellent matrix for wound dressings. J Appl Polym Sci 121(5):2893–2899

    Article  CAS  Google Scholar 

  113. Tavakoli S, Klar AS (2020) Advanced hydrogels as wound dressings. Biomolecules 10(8):1169

    Google Scholar 

  114. Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discovery Today 7(10):569–579

    Article  CAS  Google Scholar 

  115. Ahmed EM (2015) Hydrogel: Preparation, characterization, and applications: a review. J Adv Res 6(2):105–121

    Article  CAS  Google Scholar 

  116. Pereira RF, Bártolo PJ (2014) Photopolymerizable hydrogels in regenerative medicine and drug delivery. Fut Med 6–28

    Google Scholar 

  117. Yang J-A et al (2014) In situ-forming injectable hydrogels for regenerative medicine. Prog Polym Sci 39(12):1973–1986

    Article  CAS  Google Scholar 

  118. Hunt NC, Shelton RM, Grover L (2009) An alginate hydrogel matrix for the localised delivery of a fibroblast/keratinocyte co-culture. Biotechnol J 4(5):730–737

    Article  CAS  Google Scholar 

  119. Lootens L et al (2013) Keratinocytes in the treatment of severe burn injury: an update. Int Wound J 10(1):6–12

    Article  Google Scholar 

  120. Mironov V et al (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30(12):2164–2174

    Article  CAS  Google Scholar 

  121. Mironov V et al (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21(4):157–161

    Article  CAS  Google Scholar 

  122. Zhang YS et al (2017) 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng 45(1):148–163

    Article  CAS  Google Scholar 

  123. Guillotin B et al (2010) Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31(28):7250–7256

    Article  CAS  Google Scholar 

  124. Unkovskiy A et al (2019) Additive manufacturing: a comparative analysis of dimensional accuracy and skin texture reproduction of auricular prostheses replicas. J Prosthodont 28(2):e460–e468

    Article  Google Scholar 

  125. Hakimi N et al (2018) Handheld skin printer: in situ formation of planar biomaterials and tissues. Lab Chip 18(10):1440–1451

    Article  CAS  Google Scholar 

  126. Sun W et al (2020) The bioprinting roadmap. Biofabrication 12(2):022002

    Google Scholar 

  127. Michael S et al (2013) Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PloS One 8(3):e57741

    Google Scholar 

  128. Koch L et al (2013) Laser assisted cell printing. Curr Pharm Biotechnol 14(1):91–97

    CAS  Google Scholar 

  129. Seol Y-J et al (2018) 3D bioprinted biomask for facial skin reconstruction. Bioprinting 10:e00028

    Google Scholar 

  130. Obata K et al (2013) High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP). Light: Sci Appl 2(12):e116–e116

    Google Scholar 

  131. Malda J et al (2013) 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 25(36):5011–5028

    Article  CAS  Google Scholar 

  132. Singh D, Singh D, Han SS (2016) 3D printing of scaffold for cells delivery: advances in skin tissue engineering. Polymers 8(1):19

    Article  CAS  Google Scholar 

  133. Peng W, Unutmaz D, Ozbolat IT (2016) Bioprinting towards physiologically relevant tissue models for pharmaceutics. Trends Biotechnol 34(9):722–732

    Article  CAS  Google Scholar 

  134. Seol Y-J et al (2014) Bioprinting technology and its applications. Eur J Cardiothorac Surg 46(3):342–348

    Article  Google Scholar 

  135. Gudapati H, Dey M, Ozbolat I (2016) A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials 102:20–42

    Article  CAS  Google Scholar 

  136. Li K et al (2018) Controllable printing droplets on demand by piezoelectric inkjet: applications and methods. Microsyst Technol 24(2):879–889

    Article  Google Scholar 

  137. Matai I et al (2020) Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 226:119536

    Google Scholar 

  138. Mandrycky C et al (2016) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34(4):422–434

    Article  CAS  Google Scholar 

  139. McCormack A et al (2020) 3D printing in suspension baths: keeping the promises of bioprinting afloat. Trends Biotechnol 38(6):584–593

    Article  CAS  Google Scholar 

  140. Shim J-H et al (2012) Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromech Microeng 22(8):085014

    Google Scholar 

  141. Gao G et al (2019) Recent strategies in extrusion-based three-dimensional cell printing toward organ biofabrication. ACS Biomater Sci Eng 5(3):1150–1169

    Article  CAS  Google Scholar 

  142. Khalil S, Sun W (2007) Biopolymer deposition for freeform fabrication of hydrogel tissue constructs. Mater Sci Eng C 27(3):469–478

    Article  CAS  Google Scholar 

  143. Tigner TJ et al (2019) Comparison of photo cross linkable gelatin derivatives and initiators for three-dimensional extrusion bioprinting. Biomacromol 21(2):454–463

    Article  CAS  Google Scholar 

  144. Turner PR et al (2020) Peptide chitosan/dextran core/shell vascularized 3D constructs for wound healing. ACS Appl Mater Interf 12(29):32328–32339

    Article  CAS  Google Scholar 

  145. Yue Z et al (2016) Advances in printing biomaterials and living cells: implications for islet cell transplantation. Curr Opin Organ Transplant 21(5):467–475

    Article  CAS  Google Scholar 

  146. Wang Z et al (2015) A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 7(4):045009

    Google Scholar 

  147. Zhou X et al (2020) Three-dimensional printing biologically inspired dna-based gradient scaffolds for cartilage tissue regeneration. ACS Appl Mater Interf 12(29):33219–33228

    Article  CAS  Google Scholar 

  148. Lin H et al (2013) Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials 34(2):331–339

    Article  CAS  Google Scholar 

  149. Melchels FP, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24):6121–6130

    Article  CAS  Google Scholar 

  150. Donderwinkel I, Van Hest JC, Cameron NR (2017) Bio-inks for 3D bioprinting: recent advances and future prospects. Polym Chem 8(31):4451–4471

    Article  CAS  Google Scholar 

  151. Liang Y et al (2019) Direct electrohydrodynamic patterning of high-performance all metal oxide thin-film electronics. ACS Nano 13(12):13957–13964

    Article  CAS  Google Scholar 

  152. He J et al (2020) High-resolution electrohydrodynamic bioprinting: a new biofabrication strategy for biomimetic micro/nanoscale architectures and living tissue constructs. Biofabrication 12(4):042002

    Google Scholar 

  153. Gao D, Zhou JG (2019) Designs and applications of electrohydrodynamic 3D printing. Int J Bioprint 4(6):309

    Google Scholar 

  154. Mao M et al (2020) Multi-directional cellular alignment in 3D guided by electrohydrodynamically-printed microlattices. Acta Biomater 101:141–151

    Article  CAS  Google Scholar 

  155. Sutterby E et al (2020) Microfluidic skin‐on‐a‐chip models: toward biomimetic artificial skin. Small 16(39):2002515

    Google Scholar 

  156. Xu J et al (2020) Advances in the research of bioinks based on natural collagen, polysaccharide and their derivatives for skin 3D bioprinting. Polymers 12(6):1237

    Article  CAS  Google Scholar 

  157. Au AK et al (2016) 3D-printed microfluidics. Angew Chem Int Ed 55(12):3862–3881

    Article  CAS  Google Scholar 

  158. Gao G et al (2017) Tissue engineered bio-blood-vessels constructed using a tissue-specific bioink and 3D coaxial cell printing technique: a novel therapy for ischemic disease. Adv Func Mater 27(33):1700798

    Article  CAS  Google Scholar 

  159. Montero FE et al (2019) Development of a smart bioink for bioprinting applications. Front Mech Eng 5:56

    Article  Google Scholar 

  160. Gopinathan J, Noh I (2018) Recent trends in bioinks for 3D printing. Biomater Res 22(1):11

    Article  CAS  Google Scholar 

  161. Valot L et al (2019) Chemical insights into bioinks for 3D printing. Chem Soc Rev 48(15):4049–4086

    Article  CAS  Google Scholar 

  162. Smandri A et al (2020) Natural 3D-printed bioinks for skin regeneration and wound healing: a systematic review. Polymers 12(8):1782

    Article  CAS  Google Scholar 

  163. Colosi C et al (2016) Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv Mater 28(4):677–684

    Article  CAS  Google Scholar 

  164. Aderibigbe BA, Buyana B (2018) Alginate in wound dressings. Pharmaceutics 10(2):42

    Google Scholar 

  165. Pourchet LJ et al (2017) Human skin 3D bioprinting using scaffold-free approach. Adv Healthcare Mater 6(4):1601101

    Article  CAS  Google Scholar 

  166. Liu P et al (2019) 3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels. Colloids Surf B 181:1026–1034

    Article  CAS  Google Scholar 

  167. Datta S et al (2018) Alginate-honey bioinks with improved cell responses for applications as bioprinted tissue engineered constructs. J Mater Res 33(14):2029–2039

    Article  CAS  Google Scholar 

  168. Hunt NC, Grover LM (2010) Cell encapsulation using biopolymer gels for regenerative medicine. Biotech Lett 32(6):733–742

    Article  CAS  Google Scholar 

  169. Skardal A et al (2012) Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med 1(11):792–802

    Article  CAS  Google Scholar 

  170. Augustine R (2018) Skin bioprinting: a novel approach for creating artificial skin from synthetic and natural building blocks. Prog Biomater 7:77–92

    Article  CAS  Google Scholar 

  171. Xue Z, Yang M, Xu D (2019) Nucleation of biomimetic hydroxyapatite nanoparticles on the surface of type I collagen: molecular dynamics investigations. J Phys Chem C 123(4):2533–2543

    Article  CAS  Google Scholar 

  172. Nocera AD et al (2018) Development of 3D printed fibrillar collagen scaffold for tissue engineering. Biomed Microdevice 20(2):26

    Article  CAS  Google Scholar 

  173. Heidenreich AC et al (2020) Collagen and chitosan blends for 3D bioprinting: A rheological and printability approach. Polymer Test 82:106297

    Google Scholar 

  174. Albanna M et al (2019) In situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds. Sci Rep 9(1):1–15

    Article  CAS  Google Scholar 

  175. Osidak EO et al (2019) Viscoll collagen solution as a novel bioink for direct 3D bioprinting. J Mater Sci Mater Med 30(3):31

    Article  CAS  Google Scholar 

  176. Lee V et al (2014) Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods 20(6):473–484

    Article  CAS  Google Scholar 

  177. Kim JE, Kim SH, Jung Y (2016) Current status of three-dimensional printing inks for soft tissue regeneration. Tissue Eng Regen Med 13(6):636–646

    Article  CAS  Google Scholar 

  178. Ulrich TA et al (2010) Probing cellular mechanobiology in three-dimensional culture with collagen–agarose matrices. Biomaterials 31(7):1875–1884

    Article  CAS  Google Scholar 

  179. Kim G et al (2011) Coaxial structured collagen–alginate scaffolds: fabrication, physical properties, and biomedical application for skin tissue regeneration. J Mater Chem 21(17):6165–6172

    Article  CAS  Google Scholar 

  180. Ma L et al (2003) Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 24(26):4833–4841

    Article  CAS  Google Scholar 

  181. Han C-M et al (2010) Application of collagen-chitosan/fibrin glue asymmetric scaffolds in skin tissue engineering. J Zhejiang Univ Sci B 11(7):524–530

    Article  CAS  Google Scholar 

  182. Shin J-Y, Jeong S-J, Lee W-K (2019) Fabrication of porous scaffold by ternary combination of chitosan, gelatin, and calcium phosphate for tissue engineering. J Ind Eng Chem 80:862–869

    Article  CAS  Google Scholar 

  183. Choi DJ et al (2018) Effect of the pore size in a 3D bioprinted gelatin scaffold on fibroblast proliferation. J Ind Eng Chem 67:388–395

    Article  CAS  Google Scholar 

  184. Xu W et al (2019) On low-concentration inks formulated by nanocellulose assisted with gelatin methacrylate (gelma) for 3D printing toward wound healing application. ACS Appl Mater Interf 11(9):8838–8848

    Article  CAS  Google Scholar 

  185. Shi L et al (2018) Three-dimensional printing alginate/gelatin scaffolds as dermal substitutes for skin tissue engineering. Polym Eng Sci 58(10):1782–1790

    Article  CAS  Google Scholar 

  186. Huang L et al (2019) Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Carbohyd Polym 221:146–156

    Article  CAS  Google Scholar 

  187. Chen C-S et al (2018) Three-dimensionally printed silk-sericin-based hydrogel scaffold: a promising visualized dressing material for real-time monitoring of wounds. ACS Appl Mater Interf 10(40):33879–33890

    Article  CAS  Google Scholar 

  188. Wang X et al (2006) Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng 12(1):83–90

    Article  CAS  Google Scholar 

  189. Ouyang L et al (2016) Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication 8(3):035020

    Google Scholar 

  190. Roehm KD, Madihally SV (2017) Bioprinted chitosan-gelatin thermosensitive hydrogels using an inexpensive 3D printer. Biofabrication 10(1):015002

    Google Scholar 

  191. Sharma R et al (2020) 3D bioprinting pluripotent stem cell derived neural tissues using a novel fibrin bioink containing drug releasing microspheres. Front Bioeng Biotechnol 8:57

    Article  Google Scholar 

  192. Shin JH, Kang H-W (2018) The development of gelatin-based bio-ink for use in 3D hybrid bioprinting. Int J Precis Eng Manuf 19(5):767–771

    Article  Google Scholar 

  193. Xiong S et al (2017) A gelatin-sulfonated silk composite scaffold based on 3D printing technology enhances skin regeneration by stimulating epidermal growth and dermal neovascularization. Sci Rep 7(1):1–12

    CAS  Google Scholar 

  194. Das S et al (2015) Bioprintable, cell-laden silk fibroin–gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater 11:233–246

    Article  CAS  Google Scholar 

  195. Gauvin R et al (2012) Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 33(15):3824–3834

    Article  CAS  Google Scholar 

  196. Chen X et al (2019) Development of rhamnose-rich hydrogels based on sulfated xylorhamno-uronic acid toward wound healing applications. Biomater Sci 7(8):3497–3509

    Article  CAS  Google Scholar 

  197. Patrulea V et al (2015) Chitosan as a starting material for wound healing applications. Eur J Pharm Biopharm 97:417–426

    Article  CAS  Google Scholar 

  198. Pahlevanzadeh F et al (2020) Three-dimensional printing constructs based on the chitosan for tissue regeneration: state of the art, developing directions and prospect trends. Materials (Basel, Switzerland) 13(11):2663

    Article  CAS  Google Scholar 

  199. Intini C et al (2018) 3D-printed chitosan-based scaffolds: an in vitro study of human skin cell growth and an in-vivo wound healing evaluation in experimental diabetes in rats. Carbohyd Polym 199:593–602

    Article  CAS  Google Scholar 

  200. Ng WL, Yeong WY, Naing MW (2016) Polyelectrolyte gelatin-chitosan hydrogel optimized for 3D bioprinting in skin tissue engineering. Int J Bioprint 2(1):53–62

    Google Scholar 

  201. Ng WL, Yeong WY, Naing MW (2016) Development of polyelectrolyte chitosan-gelatin hydrogels for skin bioprinting. Procedia Cirp 49:105–112

    Article  Google Scholar 

  202. Hafezi F et al (2019) 3D printed chitosan dressing crosslinked with genipin for potential healing of chronic wounds. Int J Pharm 560:406–415

    Article  CAS  Google Scholar 

  203. Gholipourmalekabadi M et al (2020) Silk fibroin for skin injury repair: where do things stand? Adv Drug Deliv Rev 153:28–53

    Article  CAS  Google Scholar 

  204. Jao D, Mou X, Hu X (2016) Tissue regeneration: a silk road. J Funct Biomater 7(3):22

    Article  CAS  Google Scholar 

  205. Kamalathevan P, Ooi PS, Loo YL (2018) Silk-based biomaterials in cutaneous wound healing: a systematic review. Adv Skin Wound Care 31(12):565–573

    Article  Google Scholar 

  206. Wang F et al (2020) Tunable biodegradable polylactide–silk fibroin scaffolds fabricated by a solvent-free pressure-controllable foaming technology. ACS Appl Bio Mater 3(12):8795–8807

    Google Scholar 

  207. Keirouz A et al (2020) High-throughput production of silk fibroin-based electrospun fibers as biomaterial for skin tissue engineering applications. Mater Sci Eng C 112:110939

    Google Scholar 

  208. Egan PF (2019) Integrated design approaches for 3D printed tissue scaffolds: review and outlook. Materials 12(15):2355

    Article  CAS  Google Scholar 

  209. Chawla S et al (2018) Silk-based bioinks for 3D bioprinting. Adv Healthcare Mater 7(8):1701204

    Article  CAS  Google Scholar 

  210. Wang Q et al (2019) 3D printing of silk fibroin for biomedical applications. Materials 12(3):504

    Article  CAS  Google Scholar 

  211. Zheng Z et al (2018) 3D bioprinting of self-standing silk-based bioink. Adv Healthcare Mater 7(6):1701026

    Article  CAS  Google Scholar 

  212. Gupta S et al (2020) Evaluation of silk‐based bioink during pre and post 3D bioprinting: a review. J Biomed Mater Res Part B: Appl Biomater 109(2):279–293

    Google Scholar 

  213. Kim SH, Lim TH, Park CH (2020) Silk fibroin bioinks for digital light processing (DLP) 3D bioprinting. Bioinspired biomaterials. Springer, pp 53–66

    Chapter  Google Scholar 

  214. Gong D et al (2020) Preparing 3D-printable silk fibroin hydrogels with robustness by a two-step crosslinking method. RSC Adv 10(45):27225–27234

    Article  CAS  Google Scholar 

  215. Kulkarni G et al (2020) Tailorable hydrogel of gelatin with silk fibroin and its activation/crosslinking for enhanced proliferation of fibroblast cells. Int J Biol Macromol 164:4073–4083

    Article  CAS  Google Scholar 

  216. Kim BS et al (2017) Decellularized extracellular matrix: a step towards the next generation source for bioink manufacturing. Biofabrication 9(3):034104

    Google Scholar 

  217. Kim BS et al (2019) 3D cell printing of perfusable vascularized human skin equivalent composed of epidermis, dermis, and hypodermis for better structural recapitulation of native skin. Adv Healthcare Mater 8(7):1801019

    Article  CAS  Google Scholar 

  218. Ali M et al (2019) A photo-crosslinkable kidney ECM-derived bioink accelerates renal tissue formation. Adv Healthcare Mater 8(7):1800992

    Article  CAS  Google Scholar 

  219. Lee H et al (2017) Development of liver decellularized extracellular matrix bioink for three-dimensional cell printing-based liver tissue engineering. Biomacromol 18(4):1229–1237

    Article  CAS  Google Scholar 

  220. La W-G et al (2016) Systemically replicated organic and inorganic bony microenvironment for new bone formation generated by a 3D printing technology. RSC Adv 6(14):11546–11553

    Article  CAS  Google Scholar 

  221. Jang J et al (2018) Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics. Biomaterials 156:88–106

    Article  CAS  Google Scholar 

  222. Dzobo K, Motaung KSCM, Adesida A (2019) Recent trends in decellularized extracellular matrix bioinks for 3D printing: an updated review. Int J Mol Sci 20(18):4628

    Article  CAS  Google Scholar 

  223. Kim BS et al (2018) 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: a step towards advanced skin tissue engineering. Biomaterials 168:38–53

    Article  CAS  Google Scholar 

  224. Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23(12):H41–H56

    Article  CAS  Google Scholar 

  225. Guvendiren M, Burdick JA (2013) Engineering synthetic hydrogel microenvironments to instruct stem cells. Curr Opin Biotechnol 24(5):841–846

    Article  CAS  Google Scholar 

  226. Kang H-W et al (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34(3):312–319

    Article  CAS  Google Scholar 

  227. Hockaday L et al (2012) Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4(3):035005

    Google Scholar 

  228. Jeong H-J et al (2020) 3D bioprinting strategies for the regeneration of functional tubular tissues and organs. Bioengineering 7(2):32

    Article  CAS  Google Scholar 

  229. Sabir MI, Xu X, Li L (2009) A review on biodegradable polymeric materials for bone tissue engineering applications. J Mater Sci 44(21):5713–5724

    Article  CAS  Google Scholar 

  230. Wu W, DeConinck A, Lewis JA (2011) Omnidirectional printing of 3D microvascular networks. Adv Mater 23(24):H178–H183

    Article  CAS  Google Scholar 

  231. Kim BS et al (2016) Three-dimensional bioprinting of cell-laden constructs with polycaprolactone protective layers for using various thermoplastic polymers. Biofabrication 8(3):035013

    Google Scholar 

  232. He J et al (2020) Anti-oxidant electroactive and antibacterial nanofibrous wound dressings based on poly (ε-caprolactone)/quaternized chitosan-graft-polyaniline for full-thickness skin wound healing. Chem Eng J 385:123464

    Google Scholar 

  233. Dodero A et al (2020) Multilayer alginate-polycaprolactone electrospun membranes as skin wound patches with drug delivery abilities. ACS Appl Mater Interf 12(28):31162–31171

    Article  CAS  Google Scholar 

  234. Yang S et al (2020) Multifunctional chitosan/polycaprolactone nanofiber scaffolds with varied dual-drug release for wound-healing applications. ACS Biomater Sci Eng 6(8):4666–4676

    Article  CAS  Google Scholar 

  235. Mondal D, Griffith M, Venkatraman SS (2016) Polycaprolactone-based biomaterials for tissue engineering and drug delivery: current scenario and challenges. Int J Polym Mater Polym Biomater 65(5):255–265

    Article  CAS  Google Scholar 

  236. Borkar T, Goenka V, Jaiswal AK (2020) Application of poly-ε-caprolactone in extrusion-based bioprinting. Bioprinting 21:e00111

    Google Scholar 

  237. Li Z, Tan BH (2014) Towards the development of polycaprolactone based amphiphilic block copolymers: molecular design, self-assembly and biomedical applications. Mater Sci Eng C 45:620–634

    Article  CAS  Google Scholar 

  238. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog Polym Sci 35(10):1217–1256

    Article  CAS  Google Scholar 

  239. Guo B, Ma PX (2014) Synthetic biodegradable functional polymers for tissue engineering: a brief review. Science China Chem 57(4):490–500

    Article  CAS  Google Scholar 

  240. Lam CX et al (2009) Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. J Biomed Mater Res Part A: Off J Soc Biomater Japanese Soc Biomater Austr Soc Biomater Korean Soc Biomater 90(3):906–919

    Article  CAS  Google Scholar 

  241. Lam CX et al (2008) Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions. Biomed Mater 3(3):034108

    Google Scholar 

  242. Afghah F et al (2020) 3D printing of silver-doped polycaprolactone-poly (propylene succinate) composite scaffolds for skin tissue engineering. Biomed Mater 15(3):035015

    Google Scholar 

  243. Muwaffak Z et al (2017) Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings. Int J Pharm 527(1):161–170

    Article  CAS  Google Scholar 

  244. Patrício T et al (2014) Fabrication and characterisation of PCL and PCL/PLA scaffolds for tissue engineering. Rapid Prototyping 20(2):145–156

    Google Scholar 

  245. Casalini T et al (2019) A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front Bioeng Biotechnol 7:259

    Google Scholar 

  246. Foong CY et al (2018) Influence of poly (lactic acid) layer on the physical and antibacterial properties of dry bacterial cellulose sheet for potential acute wound healing materials. Fibers Polym 19(2):263–271

    Article  CAS  Google Scholar 

  247. Nguyen TTT et al (2013) Characteristics of curcumin-loaded poly (lactic acid) nanofibers for wound healing. J Mater Sci 48(20):7125–7133

    Article  CAS  Google Scholar 

  248. Ren Y et al (2020) Stereocomplexed electrospun nanofibers containing poly (lactic acid) modified quaternized chitosan for wound healing. Carbohydrate Polym 247:116754

    Google Scholar 

  249. Zhang B et al (2016) 3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modeling techniques. J Micromech Microeng 26(2):025015

    Google Scholar 

  250. Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Adv Drug Deliv Rev 107:367–392

    Article  CAS  Google Scholar 

  251. Liu S et al (2020) Current applications of poly (lactic acid) composites in tissue engineering and drug delivery. Comp Part B: Eng 199:108238

    Google Scholar 

  252. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8):762–798

    Article  CAS  Google Scholar 

  253. Lee SM et al (2016) Physical, morphological, and wound healing properties of a polyurethane foam-film dressing. Biomater Res 20(1):15

    Article  CAS  Google Scholar 

  254. Bankoti K et al (2017) Accelerated healing of full thickness dermal wounds by macroporous waterborne polyurethane-chitosan hydrogel scaffolds. Mater Sci Eng, C 81:133–143

    Article  CAS  Google Scholar 

  255. Eppa Ł et al (2018) Deposition of mannose-binding lectin and ficolins and activation of the lectin pathway of complement on the surface of polyurethane tubing used for cardiopulmonary bypass. J Biomed Mater Res B Appl Biomater 106(3):1202–1208

    Article  CAS  Google Scholar 

  256. Hung K-C, Tseng C-S, Hsu S-H (2016) 3D printing of polyurethane biomaterials. Advances in Polyurethane Biomaterials. Elsevier, pp 149–170

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Kargozar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nazarnezhad, S., Hooshmand, S., Baino, F., Kargozar, S. (2021). Three Dimensional (3D) Printable Gel-Inks for Skin Tissue Regeneration. In: Kumar, A., Voicu, S.I., Thakur, V.K. (eds) 3D printable Gel-inks for Tissue Engineering. Gels Horizons: From Science to Smart Materials. Springer, Singapore. https://doi.org/10.1007/978-981-16-4667-6_6

Download citation

Publish with us

Policies and ethics