Skip to main content

Thiazole Synthesis

  • Chapter
  • First Online:
Lawesson’s Reagent in Heterocycle Synthesis

Abstract

The heterocyclic compounds which contain sulfur and nitrogen atoms have a massive effect in medicinal and pharmaceutical chemistry fields. These have been reported to have different biological activities like anti-inflammatory, antifungal, antihypertensive, and antibacterial. They also serve as multidentate ligands for various metals because of the presence of sulfur and nitrogen atoms and are therefore utilized widely in coordination chemistry to construct new scaffolds with efficient bioactivity. The LR is employed for the formation of almost all heterocyclic compounds having sulfur atom(s). The Lawesson’s reagent is a reagent which surprisingly gives unexpected reactions, consequences of which lead the chemists to novel strategies and reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) G. Deepika, P. Gopinath, G. Kranthi, C. Nagamani, Y.V. Jayasree, N.V. Naidu and S. Enaganti. 2012. Synthesis and antibacterial activity of some new thiazine derivatives. J. Pharm. Res. 5: 1105–1107. (b) N. Kaur. 2015. Review of microwave-assisted synthesis of benzo-fused six-membered N,N-heterocycles. Synth. Commun. 45: 300–330. (c) N. Kaur. 2017. Applications of gold catalysts for the synthesis of five-membered O-heterocycles. Inorg. Nano Met. Chem. 47: 163–187. (d) N. Kaur, Aditi and D. Kishore. 2016. A facile synthesis of face ‘D’ quinolino annulated benzazepinone analogues with its quinoline framework appended to oxadiazole, triazole and pyrazole heterocycles. J. Heterocycl. Chem. 53: 457–460.

    Google Scholar 

  2. (a) A.T. Chaviara, P.J. Cox, K.H. Repana, R.M. Papi, K.T. Papazisis, D. Zambouli, A.H. Kortsaris, D.A. Kyriakidis and C.A. Bolos. 2004. Copper(II) Schiff base coordination compounds of diene with heterocyclic aldehydes and 2-amino-5-methyl-thiazole: Synthesis, characterization, antiproliferative and antibacterial studies. Crystal structure of CudienOOCl2. J. Inorg. Biochem. 98: 1271–1283. (b) P. Sharma, N. Kaur, R. Sirohi and D. Kishore. 2013. Microwave assisted facile one pot synthesis of novel 5-carboxamido substituted analogues of 1,4-benzodiazepin-2-one of medicinal interest. Bull. Chem. Soc. Ethiop. 27: 301–307. (c) N. Kaur, Y. Verma, N. Ahlawat, P. Grewal, P. Bhardwaj and N.K. Jangid. 2020. Copper-assisted synthesis of five-membered O-heterocycles. Inorg. Nano Met. Chem. 50: 705–740. (d) S. Caron and E. Vazquez. 2003. Efficient synthesis of [6-chloro-2-(4-chlorobenzoyl)-1H-indol-3-yl]acetic acid, a novel COX-2 inhibitor. J. Org. Chem. 68: 4104–4107.

    Google Scholar 

  3. H. Joshi, P. Upadhyay and A.J. Baxi. 1990. Studies on 4-thiazolidinones. Synthesis and antimicrobial activity of 1,4-bis(2’-aryl-5’(H)-4’-thiazolidinone-3’-ylamino)phthalazine. J. Indian Chem. Soc. 67: 779–780.

    Google Scholar 

  4. A. Al-Mulla. 2017. A review: Biological importance of heterocyclic compounds. Der Pharm. Chem. 9: 141–147.

    Google Scholar 

  5. J. Matysiak. 2006. Synthesis, antiproliferative and antifungal activities of some 2-(2,4-dihydroxyphenyl)-4H-3,1-benzothiazines. Bioorg. Med. Chem. 14: 2613–2619.

    Google Scholar 

  6. A. Macchiarulo, G. Costantino, D. Fringuelli, A. Vecchiarelli, F. Schiaffella and R. Fringuelli. 2002. 1,4-Benzothiazine and 1,4-benzoxazine imidazole derivatives with antifungal activity: A docking study. Bioorg. Med. Chem. 10: 3415–3423.

    Google Scholar 

  7. R. Fringuelli, F. Schiaffella and A. Vecchiarelli. 2001. Antifungal and immunomodulating activities of 1,4-benzothiazine azole derivatives: Review. J. Chemother. 13: 9–14.

    Google Scholar 

  8. B.S. Rathore and M. Kumar. 2006. Synthesis of 7-chloro-5-trifluoromethyl/7-fluoro/7-trifluoromethyl-4H-1,4-benzothiazines as antimicrobial agents. Bioorg. Med. Chem. 14: 5678–5682.

    Google Scholar 

  9. Y. Hirokawa, H. Kinoshita, T. Tanaka, T. Nakamura, K. Fujimoto, S. Kashimoto, T. Kojima and S. Kato. 2009. Pleuromutilin derivatives having a purine ring. Part 2: Influence of the central spacer on the antibacterial activity against Gram-positive pathogens. Bioorg. Med. Chem. Lett. 19: 170–174.

    Google Scholar 

  10. P.K. Sharma and G. Kaur. 2017. A review on antimicrobial activities of important thiazines based heterocycles. Drug Invent. Today 9: 23–25.

    Google Scholar 

  11. T. Ozturk, E. Ertas and O. Mert. 2007. Use of Lawesson’s reagent in organic syntheses. Chem. Rev. 107: 5210–5278.

    Google Scholar 

  12. M.P. Cava and M.I. Levinson. 1985. Thionation reactions of Lawesson’s reagents. Tetrahedron 41: 5061–5087.

    Google Scholar 

  13. H.Z. Lecher, R.A. Greenwood, K.C. Whitehouse and T.H. Chao. 1956. The phosphonation of aromatic compounds with phosphorus pentasulfide. J. Am. Chem. Soc. 78: 518–522.

    Google Scholar 

  14. N.C. Misra and H. Ila. 2010. 4-Bis(methylthio)methylene-2-phenyloxazol-5-one: Versatile template for synthesis of 2-phenyl-4,5-functionalized oxazoles. J. Org. Chem. 75: 5195–5202.

    Google Scholar 

  15. V. Amareshwar, N.C. Misra and H. Ila. 2011. 2-Phenyl-4-bis(methylthio)methyleneoxazol-5-one: Versatile template for diversity oriented synthesis of heterocycles. Org. Biomol. Chem. 9: 5793–5801.

    Google Scholar 

  16. S.V. Kumar, B. Saraiah, N.C. Misra and H. Ila. 2012. Synthesis of 2-phenyl-4,5-substituted oxazoles by copper-catalyzed intramolecular cyclization of functionalized enamides. J. Org. Chem. 77: 10752–10763.

    Google Scholar 

  17. S. Yugandar, A. Acharya and H. Ila. 2013. Synthesis of 2,5-bis(hetero)aryl 4’-substituted 4,5’-bisoxazoles via copper(I)-catalyzed domino reactions of activated methylene isocyanides with 2-phenyl- and 2-(2-thienyl)-4-[(aryl/heteroaryl)(methylthio)methylene]oxazol-5(4H)-ones. J. Org. Chem. 78: 3948–3960.

    Google Scholar 

  18. S.V. Kumar, G. Parameshwarappa and H. Ila. 2013. Synthesis of 2,4,5-trisubstituted thiazoles via Lawesson’s reagent-mediated chemoselective thionation-cyclization of functionalized enamides. J. Org. Chem. 78: 7362–7369.

    Google Scholar 

  19. T.D. Gordon, J. Singh, P.E. Hansen and B.A. Morgan. 1993. Synthetic approaches to the ‘azole’ peptide mimetics. Tetrahedron Lett. 34: 1901–1904.

    Google Scholar 

  20. N. Desroy, F. Moreau, S. Briet, G. LeFralliec, S. Floquet, L. Durant, V. Vongsouthi, V. Gerusz, A. Denis and S. Escaich. 2009. Towards Gram-negative antivirulence drugs: New inhibitors of HldE kinase. Bioorg. Med. Chem. 17: 1276–1289.

    Google Scholar 

  21. E. Aguliar and A.I. Meyers. 1994. Reinvestigation of a modified Hantzsch thiazole synthesis. Tetrahedron Lett. 35: 2473–2476.

    Google Scholar 

  22. M.W. Bredenkamp, C.W. Holzapfel and W.J. van Zyl. 1990. The chiral synthesis of thiazole amino acid enantiomers. Synth. Commun. 20: 2235–2249.

    Google Scholar 

  23. F.W. Foss, T.P. Mathews, Y. Kharel, P.C. Kennedy, A.H. Snyder, M.D. Davis, K.R. Lynch and T.L. MacDonald. 2009. Synthesis and biological evaluation of sphingosine kinase substrates as sphingosine-1-phosphate receptor prodrugs. Bioorg. Med. Chem. 17: 6123–6136.

    Google Scholar 

  24. F. Wolter and J. Stein. 2002. Biological activities of resveratrol and its analogs. Drugs Future 27: 949–959.

    Google Scholar 

  25. G.J. Karabatsos and N. Hsi. 1967. Structural studies by nuclear magnetic resonance - XI. Tetrahedron 23: 1079–1095.

    Google Scholar 

  26. S. Bertini, V. Calderone, I. Carboni, R. Maffei, A. Martelli, A. Martinelli, F. Minutolo, M. Rajabi, L. Testai, T. Tuccinardi, R. Ghidoni and M. Macchia. 2010. Synthesis of heterocycle-based analogs of resveratrol and their antitumor and vasorelaxing properties. Bioorg. Med. Chem. 18: 6715–6724.

    Google Scholar 

  27. J. Mehrzad, M. Rajabi and M.A. Khalilzadeh. 2010. Design and antiproliferative activity of 2-(3,5-dihydroxyphenyl)-6-hydroxybenzothiazole (DHB) on PC-3 prostate cancer cell line. Iran. J. Org. Chem. 2: 487–489.

    Google Scholar 

  28. R.A. Irgashev, A.A. Karmatsky, P.A. Slepukhin, G.L. Rusinov and V.N. Charushin. 2013. A convenient approach to the design and synthesis of indolo[3,2-c]coumarins via the microwave-assisted Cadogan reaction. Tetrahedron Lett. 54: 5734–5738.

    Google Scholar 

  29. T.M. Potewar, K.T. Petrova and M.T. Barros. 2013. Efficient microwave assisted synthesis of novel 1,2,3-triazole-sucrose derivatives by cycloaddition reaction of sucrose azides and terminal alkynes. Carbohydr. Res. 379: 60–67.

    Google Scholar 

  30. R.C. Lian, M.H. Lin, M.H. Liao, J.J. Fu, Y.C. Wu, F.R. Chang, C.C. Wu, M.J. Wu and P.S. Pan. 2014. Direct synthesis of the arylboronic acid analogues of phenylglycine via microwave-assisted four-component Ugi reaction. Tetrahedron 70: 1800–1804.

    Google Scholar 

  31. M.Y. Mentese, H. Bayrak, Y. Uygun, A. Mermer, S. Ulker, S.A. Karaoglu and N. Demirbas. 2013. Microwave assisted synthesis of some hybrid molecules derived from norfloxacin and investigation of their biological activities. Eur. J. Med. Chem. 67: 230–242.

    Google Scholar 

  32. F. Messina and O. Rosati. 2013. Superheated water as solvent in microwave assisted organic synthesis of compounds of valuable pharmaceutical interest. Curr. Org. Chem. 17: 1158–1178.

    Google Scholar 

  33. P. Appukkuttan, V.P. Mehta and E.V. van der Eycken. 2010. Microwave-assisted cycloaddition reactions. Chem. Soc. Rev. 39: 1467–1477.

    Google Scholar 

  34. X. Zhang, H. Jiang, D. Ye, H. Sun and H. Liu. 2009. Microwave-assisted synthesis of quinazolinone derivatives by efficient and rapid iron-catalyzed cyclization in water. Green Chem. 11: 1881–1888.

    Google Scholar 

  35. B. Maiti, K. Chanda, M. Selvaraju, C.C. Tseng and C.M. Sun. 2013. Multicomponent solvent-free synthesis of benzimidazolyl imidazo[1,2-a]pyridine under microwave irradiation. ACS Comb. Sci. 15: 291–297.

    Google Scholar 

  36. A. Walia, S. Kang and R.B. Silverman. 2013. Microwave-assisted protection of primary amines as 2,5-dimethylpyrroles and their orthogonal deprotection. J. Org. Chem. 78: 10931–10937.

    Google Scholar 

  37. E.F. Dimauro and J.M. Kennedy. 2007. Rapid synthesis of 3-amino-imidazopyridines by a microwave-assisted four-component coupling in one pot. J. Org. Chem. 72: 1013–1016.

    Google Scholar 

  38. R.B. Sparks and A.P. Combs. 2004. Microwave-assisted synthesis of 2,4,5-triaryl-imidazole; a novel thermally induced N-hydroxyimidazole N-O bond cleavage. Org. Lett. 6: 2473–2475.

    Google Scholar 

  39. H.D. Patel, S.M. Divatia and E. de Clercq. 2013. Synthesis of some novel thiosemicarbazone derivatives having anti-cancer, anti-HIV as well as anti-bacterial activity. Indian J. Chem. Sect. B 52: 535–545.

    Google Scholar 

  40. S.M. Prajapati, R.H. Vekariya, K.D. Patel, S.N. Panchal, H.D. Patel, D.P. Rajani and S. Rajani. 2014. Synthesis and in vitro antibacterial and antifungal evaluation of quinoline analogue azetidine and thiazolidine derivatives. Int. Lett. Chem. Phys. Astron. 20: 195–210.

    Google Scholar 

  41. N.P. Prajapati, R.H. Vekariya and H.D. Patel. 2015. Microwave induced facile one-pot access to diverse 2-cyanobenzothiazole - a key intermediate for the synthesis of firefly luciferin. Int. Lett. Chem. Phys. Astron. 44: 81–89.

    Google Scholar 

  42. J.A. Seijas, M.P. Vázquez-Tato, M.R. Carballido-Reboredo, J. Crecente-Campo and L. Romar-López. 2007. Lawesson’s reagent and microwaves: A new efficient access to benzoxazoles and benzothiazoles from carboxylic acids under solvent-free conditions. Synlett 2: 313–317.

    Google Scholar 

  43. C.L. Penney, P. Shah and S. Landi. 1985. A simple method for the synthesis of long-chain alkyl esters of amino acids. J. Org. Chem. 50: 1457–1459.

    Google Scholar 

  44. A.A. Kiryanov, P. Sampson and A.J. Seed. 2001. Synthesis of 2-alkoxy-substituted thiophenes, 1,3-thiazoles, and related S-heterocycles via Lawesson’s reagent-mediated cyclization under microwave irradiation: Applications for liquid crystal synthesis. J. Org. Chem. 66: 7925–7929.

    Google Scholar 

  45. M. Yokoyama, Y. Menjo, M. Watanabe and H. Togo. 1994. Synthesis of oxazoles and thiazoles using thioimidates. Synthesis 12: 1467–1470.

    Google Scholar 

  46. T.P. Andersen, A.-B.A.G. Ghattas and S.-O. Lawesson. 1983. Studies on amino acids and peptides - IV. Tetrahedron 39: 3419–3427.

    Google Scholar 

  47. Z. Kaleta, G. Tarkanyi, A. Gomory, F. Kalman, T. Nagy and T. Soos. 2006. Synthesis and application of a fluorous Lawesson’s reagent: Convenient chromatography-free product purification. Org. Lett. 8: 1093–1095.

    Google Scholar 

  48. Z. Kaleta, B.T. Makowski, T. Soos and R. Dembinski. 2006. Thionation using fluorous Lawesson’s reagent. Org. Lett. 8: 1625–1628.

    Google Scholar 

  49. L. Friedman and H. Shechter. 1961. Dimethylformamide as a useful solvent in preparing nitriles from aryl halides and cuprous cyanide; improved isolation techniques. J. Org. Chem. 26: 2522–2524.

    Google Scholar 

  50. M.M. Murza, T.R. Prosochina, M.G. Safarov and E.A. Kantor. 2001. Synthesis and quantum-chemical study of liquid-crystal derivatives of thiazole. Chem. Heterocycl. Compd. (Engl. Transl.) 37: 1258–1265.

    Google Scholar 

  51. Z.K. Kuvatov, M.G. Safarov and M.M. Murza. 2004. New derivatives of thiazole with mesomorphous properties. Chem. Heterocycl. Compd. (Engl. Transl.) 40: 500–502.

    Google Scholar 

  52. A.S. Golovanov, M.M. Murza and M.G. Safarov. 1997. Novel mesomorphic Schiff bases. Chem. Heterocycl. Compd. 33: 1350–1351.

    Google Scholar 

  53. M.M. Murza, A.S. Golovanov and M.G. Safarov. 1996. New liquid crystal derivatives of thiazole. Chem. Heterocycl. Compd. (Engl. Transl.) 32: 477–478.

    Google Scholar 

  54. A.M. Grubb, S. Hasan, A.A. Kiryanov, P. Sampson and A.J. Seed. 2009. The synthesis and physical evaluation of 5-alkoxy-1,3-thiazoles prepared via Lawesson’s reagent-mediated cyclisation of α-benzamido esters. Liq. Cryst. 36: 443–453.

    Google Scholar 

  55. M. Jesberger, T.P. Davies and L. Barner. 2003. Applications of Lawesson’s reagent in organic and organometallic syntheses. Synthesis 13: 1929–1958.

    Google Scholar 

  56. D.L.J. Clive, S. Hisaindee and D.M. Coltart. 2003. Derivatized amino acids relevant to native peptide synthesis by chemical ligation and acyl transfer. J. Org. Chem. 68: 9247–9254.

    Google Scholar 

  57. T. Patonay, E. Juhasz-Toth and A. Benyei. 2002. Base-induced coupling of α-azido ketones with aldehydes - an easy and efficient route to trifunctionalized synthons 2-azido-3-hydroxyketones, 2-acylaziridines, and 2-acylspiroaziridines. Eur. J. Org. Chem. 2: 285–295.

    Google Scholar 

  58. N.J. Gilmore, S. Jones and M.P. Muldowney. 2004. Synthetic applicability and in situ recycling of a B-methoxy oxazaborolidine catalyst derived from cis-1-amino-indan-2-ol. Org. Lett. 6: 2805–2808.

    Google Scholar 

  59. S. Takami and M. Irie. 2004. Synthesis and photochromic properties of novel yellow developing photochromic compounds. Tetrahedron 60: 6155–6161.

    Google Scholar 

  60. H.Z. Lecher, R.A. Greenwood, K.C. Whitehouse and T.H. Cho. 1956. The phosphonation of aromatic compounds with phosphorus pentasulfide. J. Am. Chem. Soc. 78: 5018–5022.

    Google Scholar 

  61. J. Lee, S.-H. Lee, H.J. Seo, E.-J. Son, S.H. Lee, M.E. Jung, M. Lee, H.-K. Han, J. Kim, J. Kang and J. Lee. 2010. Novel C-aryl glucoside SGLT2 inhibitors as potential antidiabetic agents: 1,3,4-Thiadiazolylmethylphenyl glucoside congeners. Bioorg. Med. Chem. 18: 2178–2194.

    Google Scholar 

  62. M.J. Kim, J. Lee, S.Y. Kang, S.-H. Lee, E.-J. Son, M.E. Jung, S.H. Lee, K.-S. Song, M. Lee, H.-K. Han, J. Kim and J. Lee. 2010. Novel C-aryl glucoside SGLT2 inhibitors as potential antidiabetic agents: Pyridazinylmethylphenyl glucoside congeners. Bioorg. Med. Chem. Lett. 20: 3420–3425.

    Google Scholar 

  63. K.-S. Song, S.H. Lee, M.J. Kim, H.J. Seo, J. Lee, S.-H. Lee, M.E. Jung, E.-J. Son, M.W. Lee, J. Kim and J. Lee. 2011. Synthesis and SAR of thiazolylmethylphenyl glucoside as novel C-aryl glucoside SGLT2 inhibitors. ACS Med. Chem. Lett. 2: 182–187.

    Google Scholar 

  64. T. Besson and V. Thiery. 2006. Microwave-assisted synthesis of sulfur and nitrogen-containing heterocycles. Top. Heterocycl. Chem. 1: 59–78.

    Google Scholar 

  65. O. Uchikawa, K. Fukatsu and T. Aono. 1994. Aminothiazole derivatives. I. A convenient synthesis of monocyclic and condensed 5-aminothiazole derivatives. J. Heterocycl. Chem. 31: 877–887.

    Google Scholar 

  66. T. Vojkovsky. 1995. Detection of secondary amines on solid phase. Pept. Res. 8: 236–237.

    Google Scholar 

  67. J.F. Sanz-Cervera, R. Blasco, J. Piera, M. Cynamon, I. Ibanez, M. Murguia and S. Fustero. 2009. Solution versus fluorous versus solid-phase synthesis of 2,5-disubstituted 1,3-azoles. Preliminary antibacterial activity studies. J. Org. Chem. 74: 8988–8996.

    Google Scholar 

  68. P. Wipf, C. Jenny and H. Heimgartner. 1987. 2,4-Bis(4-methylpheylthio)-1,3,2λ5,4λ5-dithiadiphosphetan-2,4-dithion: Ein neues reagens zur Schwefelung von N,N-disubstituierten amiden. Helv. Chim. Acta 70: 1001–1011.

    Google Scholar 

  69. D. Obrecht and H. Heimgartner. 1982. A convenient synthesis of 2-oxazolin-5-ones and related compounds via amide cyclization. Chimia 36: 78–81.

    Google Scholar 

  70. D. Obrecht, R. Prewo, J.H. Bieri and H. Heimgartner. 1982. 1,3-Dipolare cycloadditionen von 2-(benzonitrilio)-2-propanid mit 4,4-dimethyl-2-phenyl-2-thiazolin-5-thion und schwefelkohlenstoff. Helv. Chim. Acta 65: 1825–1836.

    Google Scholar 

  71. C. Jenny and H. Heimgartner. 1986. Synthese von 4,4-disubstituierten 1,3-thiazol-5(4H)-thionen. Helv. Chim. Acta 69: 374–388.

    Google Scholar 

  72. M.J. Thompson and B. Chen. 2008. Versatile assembly of 5-aminothiazoles based on the Ugi four-component coupling. Tetrahedron Lett. 49: 5324–5327.

    Google Scholar 

  73. M.J. Thompson and B. Chen. 2009. Ugi reactions with ammonia offer rapid access to a wide range of 5-aminothiazole and oxazole derivatives. J. Org. Chem. 74: 7084–7092.

    Google Scholar 

  74. G. Koopmanschap, E. Ruijter and V.A.O. Romano. 2014. Isocyanide-based multicomponent reactions towards cyclic constrained peptidomimetics. Beilstein J. Org. Chem. 10: 544–598.

    Google Scholar 

  75. M.C. Bagley, K.E. Bashford, C.L. Hesketh and C.J. Moody. 2000. Total synthesis of the thiopeptide promothiocin A. J. Am. Chem. Soc. 122: 3301–3313.

    Google Scholar 

  76. J.R. Davies, P.D. Kane and C.J. Moody. 2005. The diazo route to diazonamide A. Studies on the indole bis-oxazole fragment. J. Org. Chem. 70: 7305–7316.

    Google Scholar 

  77. A. Ford, H. Miel, A. Ring, C.N. Slattery, A.R. Maguire and M.A. McKervey. 2015. Modern organic synthesis with α-diazocarbonyl compounds. Chem. Rev. 115: 9981–10080.

    Google Scholar 

  78. B.S. Drach, I.Y. Dolgushina and A.V. Kirsanov. 1973. Reaction of omega-chlorine-omega-acylamino-acetophenones with thioacetamide. Zh. Org. Khim. 9: 414–419.

    Google Scholar 

  79. B.S. Drach, I.Y. Dolgushina and A.D. Sinitsa. 1974. Some cyclization reactions of ω-chloro-ω-acylamidoacetophenones. Khim. Geterotsikl. Soedin. 7: 928–931.

    Google Scholar 

  80. B.S. Drach, I.Y. Dolgushina and A.D. Sinitsa. 1975. Verwendung von omega-chlor-omega-acylaminoacetophenon zur synthese phosphorylierter oxazole. Zh. Obshch. Khim. 45: 1251–1255.

    Google Scholar 

  81. R.A. Cherkasov, G.A. Kutyrev and A.N. Pudovik. 1985. Tetrahedron report number 186. Organothiophosphorus reagents in organic synthesis. Tetrahedron 41: 2567–2624.

    Google Scholar 

  82. S.I. Zav’yalov, T.K. Budkova and M.N. Larionova. 1976. New method for conversion of N-acyl-α-aminoketones to substituted thiazoles. Bull. Acad. Sci. USSR Div. Chem. Sci. 25: 1353–1356.

    Google Scholar 

  83. T. Nishio and M. Ori. 2001. Thionation of ω-acylamino ketones with Lawesson’s reagent: Convenient synthesis of 1,3-thiazoles and 4H-1,3-thiazines. Helv. Chim. Acta 84: 2347–2354.

    Google Scholar 

  84. A.G. Belyuga, V.S. Brovarets and B.S. Drach. 2004. Phosphorus pentasulfide and Lawesson reagent in synthesis of 1,3-thiazole-4-thiol derivatives. Russ. J. Gen. Chem. 74: 1418–1422.

    Google Scholar 

  85. R.A. Hughes, S.P. Thompson, L. Alcaraz and C.J. Moody. 2004. Total synthesis of the thiopeptide amythiamicin D. Chem. Commun. 8: 946–948.

    Google Scholar 

  86. C. Jenny and H. Heimgartner. 1989. Bildung von 5,6-dihydro-1,3(4H)-thiazin-4-carbonsäure-estern aus 4-allyl-1,3-thiazol-5(4H)-onen. Helv. Chim. Acta 72: 1639–1646.

    Google Scholar 

  87. C. Bengtsson. 2013. Synthesis of substituted ring-fused 2-pyridones and applications in chemical biology. PhD Thesis, Umea University.

    Google Scholar 

  88. R.A. Hughes, S.P. Thompson, L. Alcaraz and C.J. Moody. 2005. Total synthesis of the thiopeptide antibiotic amythiamicin D. J. Am. Chem. Soc. 127: 15644–15651.

    Google Scholar 

  89. J.R. Davies, P.D. Kane and C.J. Moody. 2004. N-H Insertion reactions of rhodium carbenoids. Part 5: A convenient route to 1,3-azoles. Tetrahedron 60: 3967–3977.

    Google Scholar 

  90. I. Thomsen, K. Clausen, S. Scheibye and S.O. Lawesson. 1984. Thiation with 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiaphosphetane 2,4-disulfide: N-Methylthiopyrrolidone. Org. Synth. 62: 158–164.

    Google Scholar 

  91. J.P. Freeman. 1990. John Wiley & Sons: New York, NY, 372.

    Google Scholar 

  92. M.H. Zheng, J.Y. Jin, W. Sun and C.H. Yan. 2006. A new series of fluorescent 5-methoxy-2-pyridylthiazoles with a pH-sensitive dual-emission. New J. Chem. 30: 1192–1196.

    Google Scholar 

  93. L.G. Lee, C.H. Chen and L.A. Chiu. 1986. Thiazole orange: A new dye for reiculocyte analysis. Cytometry 7: 508–517.

    Google Scholar 

  94. Z.X. Li, L.Y. Liao, W. Sun, C.H. Xu, C. Zhang, C.J. Fang and C.H. Yan. 2008. Re-configurable cascade circuit in a photo- and chemical-switchable fluorescent diarylethene derivative. J. Phys. Chem. C 112: 5190–5196.

    Google Scholar 

  95. X.C. Hu, S. Wei, Z. Chao, B.Y. Chun, F.C. Jie, L.W. Tao, H.Y. Yi and Y.C. Hua. 2009. Chemical approaches for mimicking logic functions within fluorescent MPT dyes. Sci. Chin. Ser. B: Chem. 52: 700–714.

    Google Scholar 

  96. M.S.J. Foreman and J.D. Woollins. 2000. Organo-P-S and P-Se heterocycles. J. Chem. Soc. Dalton Trans. 10: 1533–1543.

    Google Scholar 

  97. R. Markovic, A. Rasovic, M. Baranac, M. Stojanovic, P.J. Steel and S. Jovetic. 2004. Thionation of N-methyl- and N-unsubstituted thiazolidine enaminones. J. Serb. Chem. Soc. 69: 909–918.

    Google Scholar 

  98. R. Markovic, M. Baranac and S. Jovetic. 2003. A novel and efficient 4-oxothiazolidine-1,2-dithiole rearrangement induced by Lawesson’s reagent. Tetrahedron Lett. 44: 7087–7090.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navjeet Kaur .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, N. (2022). Thiazole Synthesis. In: Lawesson’s Reagent in Heterocycle Synthesis. Springer, Singapore. https://doi.org/10.1007/978-981-16-4655-3_2

Download citation

Publish with us

Policies and ethics