Abstract
The lignocellulosic material consists of three subunits, hemicellulose, lignin, and cellulose, that are fractionated to extract and produce value-added compounds, such as food additives, organic acids, ethanol, and enzymes. Various biotechnological applications such as effluent bioremediation, hydrolysis and paper bleaching, and construction of biosensors require large quantities of low-cost enzymes. Thus, an appropriate choice for the production of low-cost enzymes is the use of lignocellulosic residues, which contain soluble carbohydrates that can be used as inducers of enzymatic synthesis. However, the depolymerization of lignocellulosic components through various treatments (chemical, physical, physicochemicals, and biological) is necessary for the efficient production of enzymes. Therefore, this book chapter addresses the chemical composition of lignocellulosic residues and their various treatments that allow obtaining value-added products, mainly enzymes. The main types of industrial enzymes, their application in several technological areas, and their market in the world are also addressed.
Keywords
- Biomass
- Lignocellulosic treatment
- Industrial enzymes
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Aguiar A, Ferraz A (2012) Uso de aditivos na biodegradação de madeira pelo fungo ceriporiopsis subvermispora: efeito na peroxidação de lipídios dependente de manganês-peroxidase. Quim Nova 35:1107–1111
Akhtar N, Gupta K, Goyal D, Goyal A (2015) Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Environ Prog Sustain Energy 35(2):489–511. https://doi.org/10.1002/ep.12257
Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093
Amine A, Arduini F, Moscone D, Palleschi G (2016) Recent advances in biosensors based on enzyme inhibition. Biosens Bioelectron 76:180–194. https://doi.org/10.1016/j.bios.2015.07.010
Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30(3):512–523. https://doi.org/10.1016/j.biotechadv.2011.09.005
Arnau J, Yaver D, Hjort CM (2020) Strategies and challenges for the development of industrial enzymes using fungal cell factories. In: Nevalainen H (ed) Grand challenges in fungal biotechnology. Springer Nature, Switzerland, pp 179–210
Aung EM, Endo T, Fujii S, Kuroda K, Ninomiya K, Takahashi K (2018) Efficient pretreatment of bagasse at high loading in an ionic liquid. Ind Crop Prod 119:243–248. https://doi.org/10.1016/j.indcrop.2018.04.006
Ayoub A, Venditti RA, Pawlak JJ, Sadeghifar H, Salam A (2013) Development of an acetylation reaction of switchgrass hemicellulose in ionic liquid without catalyst. Ind Crop Prod 44:306–314
Azelee NIW, Jahim JM, Rabu A, Murad AMA, Bakar FDA, Illias RM (2014) Efficient removal of lignin with the maintenance of hemicelluloses from kenaf by two-stage pretreatment process. Carbohydr Polym 99:447–453
Bahadır EB, Sezgintürk MK (2017) Biosensor technologies for analyses of food contaminants. Nano:289–337. https://doi.org/10.1016/b978-0-12-804301-1.00008-4
Barakat A, Chuetor S, Monlau F, Solhy A, Rouau X (2014) Eco-friendly dry chemo-mechanical pretreatments of lignocellulosic biomass: impact on energy and yield of the enzymatic hydrolysis. Appl Energy 113:97–105
Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sust Energ Rev 36:91–106. https://doi.org/10.1016/j.rser.2014.04.047
Benazzi T, Calgaroto S, Astolfi V, Dalla Rosa C, Oliveira JV, Mazutti MA (2013) Pretreatment of sugarcane bagasse using supercritical carbon dioxide combined with ultrasound to improve the enzymatic hydrolysis. Enzym Microb Technol 52(4–5):247–250. https://doi.org/10.1016/j.enzmictec.2013.02.001
Bhutto AW, Qureshi K, Harijan K, Abro R, Abbas T, Bazmi AA, Yu G (2017) Insight into progress in pre-treatment of lignocellulosic biomass. Energy 122:724–745. https://doi.org/10.1016/j.energy.2017.01.005
Biswas R, Ahring BK (2016) Fractionation of lignocellulosic biomass materials with wet explosion pretreatment. Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery, 369–384. https://doi.org/10.1016/b978-0-12-802323-5.00016-5
Bock JE (2015) Enzymes in breadmaking. Improving and Tailoring Enzymes for Food Quality and Functionality. pp. 181–198. https://doi.org/10.1016/b978-1-78242-285-3.00009-0
Boujemaoui A, Mongkhontreerat S, Malmström E, Carlmark A (2015) Preparation and characterization of functionalized cellulose nanocrystals. Carbohydr Polym 115:457–464
Bozell JJ, Holladay JE, Johnson D, White JF (2007) Top value added chemicals from biomass. Volume II – Results of Screening for Potencial Candidates from Biorefinery Lignin. U.S. Department of Energy - Energy Efficiency and Renewable Energy
Brites LTGF, Schmiele M, Steel CJ (2018) Gluten-free bakery and pasta products. Alternative and Replacement Foods. pp. 385–410. https://doi.org/10.1016/b978-0-12-811446-9.00013-7
Brum SS, de Oliveira LCA, Bianchi ML, Guerreiro MC, de Oliveira LK, Carvalho KTG (2012) Síntese de acetato de celulose a partir da palha de feijão utilizando N-bromossuccinimida (NBS) como catalisador. Polímeros 22(5):447–452. https://doi.org/10.1590/s0104-14282012005000061
Bugg TDH, Rahmanpour R, Rashid GMM (2016) Bacterial enzymes for lignin oxidation and conversion to renewable chemicals. Biofuels Biorefineries:131–146. https://doi.org/10.1007/978-981-10-1965-4_5
Bugg TD, Rahmanpour R (2015) Enzymatic conversion of lignin into renewable chemicals. Curr Opin Chem Biol 29:10–17. https://doi.org/10.1016/j.cbpa.2015.06.009
Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R (2011) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28:1883–1896
Canilha L, Milagres AMF, Silva SS, Silva JBA, Felipe MGA, Rocha GJM, Ferraz A, Carvalho W (2010) Sacarificação da biomassa lignocelulósica através de pré-hidrólise ácida seguida por hidrólise enzimática: uma estratégia de “desconstrução” da fibra. Rev Analyt 44:48–54
Cao Y, Wu J, Zhang J, Li H, Zhang Y, He J (2009) Room temperature ionic liquids (RTILs): a new and versatile plataform for cellulose processing and derivatization. Chem Eng J 147:13–21
Carlile JM, Watkinson SC, Gooday GW (2002) The fungi, vol 2. Elsevier/Academic Press, London, p 588
Carneiro TF, Timko M, Prado JM, Berni M (2016) Biomass pretreatment with carbon dioxide. Biomass fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery. pp. 385–407. https://doi.org/10.1016/b978-0-12-802323-5.00017-7
Jayasinghe C, Imtiaj A, Lee GW, Im KH, Hur H, Lee MW, Yang H-S, Lee T-S (2008) Degradation of three aromatic dyes by White rot fungi and the production of Ligninolytic enzymes. Mycobiology 36(2):114–120. https://doi.org/10.4489/MYCO.2008.36.2.114
Chen H, Li G, Li H (2014a) Novel pretreatment of steam explosion associated with ammonium chloride preimpregnation. Bioresour Technol 153:154–159. https://doi.org/10.1016/j.biortech.2013.11.025
Chen W, Yu H, Liu Y, Hai Y, Zhang M, Chen P (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442
Chen X, Zhang Y, Gu Y, Liu Z, Shen Z, Chu H, Zhou X (2014b) Enhancing methane production from rice straw by extrusion pretreatment. Appl Energy 122:34–41. https://doi.org/10.1016/j.apenergy.2014.01.076
Cheroni S, Gatti B, Margheritis G, Formantici C, Perrone L, Galante YM (2012) Enzyme resistance and biostability of hydroxyalkylated celulose and galactomannan as thickeners in waterborne paints. Int Biodeterior Biodegradation 69:106–112
Chiu SLH, Lo IMC (2016) Reviewing the anaerobic digestion and co-digestion process of food waste from the perspectives on biogas production performance and environmental impacts. Environ Sci Pollut Res 23:24435–24450
Ciolacu DE (2018). Biochemical modification of lignocellulosic biomass. Biomass as Renewable Raw Material to Obtain Bioproducts of High-Tech Value. pp. 315–350. https://doi.org/10.1016/b978-0-444-63774-1.00009-0
Comyns AE (2012) Market research forecasts industrial enzymes market at $6 bn by 2016. Focus on Catalysts
Daiha KG, Brêda GC, Larentis AL, Freire DMG, Almeida RV (2016) Enzyme technology in Brazil: trade balance and research community. Brazil J Sci Technol 3:17
Danalache F, Mata P, Alves VD, Moldão-Martins M (2018) Enzyme-assisted extraction of fruit juices. Fruit Juices:183–200. https://doi.org/10.1016/b978-0-12-802230-6.00010-2
Das S, Dash HR (2014) Microbial bioremediation. Microb Biodegrad Bioremed:1–21. https://doi.org/10.1016/b978-0-12-800021-2.00001-7
Davis JR, Sello JK (2009) Regulation of genes in Streptomyces bacteria required for catabolism of lignin-derived aromatic compounds. Appl Microbiol Biotechnol 86(3):921–929. https://doi.org/10.1007/s00253-009-2358-0
Davis F, Higson SPJ (2012) 5 - Practical applications and protocols for enzyme biosensors. In: Séamus Higson (ed) Woodhead publishing series in biomaterials, biosensors for medical applications, Woodhead Publishing, pp 135–160, ISBN 9781845699352 https://doi.org/10.1533/9780857097187.1.135
Deswal D, Khasa YP, Kuhad RC (2011) Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour Technol 102:6065–6072
Dong M, Walker TH (2008) Characterization of high-pressure carbon dioxide explosion to enhance oil extraction from canola. J Supercrit Fluids 44(2):193–200. https://doi.org/10.1016/j.supflu.2007.10.010
Du X, Gellerstedt G, Li J (2013) Universal fractionation of lignin–carbohydrate complexes (LCCs) from lignocellulosic biomass: an example using spruce wood. Plant J 74(2):328–338
Duque A, Manzanares P, Ballesteros I, Ballesteros M (2016) Steam explosion as lignocellulosic biomass pretreatment. Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery. pp. 349–368. https://doi.org/10.1016/b978-0-12-802323-5.00015-3
Dzionek A, Wojcieszyńska D, Guzik U (2016) Natural carriers in bioremediation: a review. Electron J Biotechnol 23:28–36. https://doi.org/10.1016/j.ejbt.2016.07.003
ECN database Phyllis2 (n.d.) Database for biomass and waste. www.phyllis.nl. Accessed 02 Oct 2018
Egues I, Sanchez C, Mondragon I, Labidi J (2012) Effect of alkaline and autohydrolysis processes on the purity of obtained hemicelluloses from corn stalks. Bioresour Technol 103:239–248
Elisashvili V, Penninckx M, Kachlishvili E, Tsiklauri N, Metreveli E, Kharziani T, Kvesitadze G (2008) Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid-state fermentation of lignocellulosic wastes of different composition. Bioresour Technol 99:457–462
Ephrem E, Najjar A, Charcosset C, Greige-Gerges H (2018) Encapsulation of natural active compounds, enzymes, and probiotics for fruit juice fortification, preservation, and processing: an overview. J Funct Foods 48:65–84. https://doi.org/10.1016/j.jff.2018.06.021
Eudes A, Liang Y, Mitra P, Loque D (2014) Lignin bioengineering. Curr Opin Biotechnol 26:189–198
Fallahi P, Habte-Tsion H-M, Rossi W (2018) Depolymerizating enzymes in human food. Enzym n Hum Anim Nutr:211–237. https://doi.org/10.1016/b978-0-12-805419-2.00010-1
Farinas CS (2015) Developments in solid-state fermentation for the production of biomass-degrading enzymes for the bioenergy sector. Renew Sust Energ Rev 52:179–188. https://doi.org/10.1016/j.rser.2015.07.092
Fasim A, More VS, More SS (2021) Large-scale production of enzymes for biotechnology uses. Curr Opin Biotechnol 69:68–76
Fazenda ML, Seviour R, McNeil B, Harvey LM (2008) Submerged culture fermentation of “higher fungi”: the macrofungi. Adv Appl Microbiol 63:33–103. https://doi.org/10.1016/s0065-2164(07)00002-0
Fei Z, Ang WH, Zhao D, Scopelliti R, Zvereva EE, Katsyuba SA, Dyson PJ (2007) Revisiting ether-derivatized imidazolium-based ionic liquids. J Phys Chem B 111:10095–10108
Ferreira LFR, Aguiar MM, Messias TG, Pompeu GB, Lopez AMQ, Silva DP, Monteiro RT (2011) Evaluation ofsugar-canevinassetreatedwith Pleurotussajor-caju utilizing aquatic organisms as toxicological indicators. Ecotoxicol Environ Saf 74:132–137
Gao F, Lu X (2015) Detection of pesticides in foods by enzymatic biosensors. Improving and Tailoring Enzymes for Food Quality and Functionality. pp. 147–160. https://doi.org/10.1016/b978-1-78242-285-3.00007-7
García A, Gandini A, Labidi J, Belgacem N, Bras J (2016) Industrial and crop wastes: a new source for nanocellulose biorefinery. Ind Crops Prod 93:26–38
Gatt E, Rigal L, Vandenbossche V (2018) Biomass pretreatment with reactive extrusion using enzymes: a review. Ind Crop Prod 122:329–339. https://doi.org/10.1016/j.indcrop.2018.05.069
Ghaffar SH, Fan M (2014) Lignin in straw and its applications as an adhesive. Int J Adhes Adhes 48:92–101
Ghosh A, Dastidar MG, Sreekrishnan TR (2017) Bioremediation of chromium complex dyes and treatment of sludge generated during the process. Int Biodeterior Biodegrad 119:448e460. https://doi.org/10.1016/j.ibiod.2016.08.013
Gianfreda L, Rao MA, Scelza R, de la Luz Mora M (2016) Chapter 6 – role of enzymes in environment cleanup/remediation. In: Dhillon GS, Kaur S (eds) Agro-industrial wastes as feedstock for enzyme production. Academic Press, pp 133–155. ISBN 9780128023921. https://doi.org/10.1016/B978-0-12-802392-1.00006-X
Gibson M, Newsham P (2018) Wine and beer. Food Science and the Culinary Arts. pp. 373–397. https://doi.org/10.1016/b978-0-12-811816-0.00019-1
Golan-Rozen N, Seiwert B, Riemenschneider C, Reemtsma T, Chefetz B, Hadar Y (2015) Transformation pathways of the recalcitrant pharmaceutical compound carbamazepine by the White-rot fungus Pleurotus ostreatus: effects of growth conditions. Environ Sci Technol 49(20):12351–12362. https://doi.org/10.1021/acs.est.5b02222
Hamelinck CN, van Hooijdonk G, Faaij AP (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28(4):384–410. https://doi.org/10.1016/j.biombioe.2004.09.002
Hansen GH, Lübeck M, Frisvad JC, Lübeck PS, Andersen B (2015) Production of cellulolytic enzymes from ascomycetes: comparison of solid state and submerged fermentation. Process Biochem 50(9):1327–1341. https://doi.org/10.1016/j.procbio.2015.05.017
Hassan SS, Williams GA, Jaiswal AK (2018) Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour Technol 262:310–318. https://doi.org/10.1016/j.biortech.2018.04.099
Hatakka A (2005) Biodegradation of lignin. In: Steinbüchel A, Hofrichter M (eds) Biopolymers online. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. https://doi.org/10.1002/3527600035.bpol1005
Inácio FD, Ferreira RO, Araujo CAV, Peralta RM, Souza CGM (2015) Production of enzymes and biotransformation of Orange waste by oyster mushroom, Pleurotus pulmonarius (Fr.) Quél. Adv Microbiol 5:1–8
Janusz G, Kucharzyk KH, Pawlik A, Staszczak M, Paszczynski AJ (2013) Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzym Microb Technol 52:1–12
Jiang H, Chen Q, Ge J, Zhang Y (2014) Efficient extraction and characterization of polymeric hemicelluloses from hybrid poplar. Carbohydr Polym 101:1005–1012
Karunakaran C, Madasamy T, Sethy NK (2015) Enzymatic biosensors. Biosens Bioelectron:133–204. https://doi.org/10.1016/b978-0-12-803100-1.00003-7
Khatoon N, Jamal A, Ali MI (2017) Polymeric pollutant biodegradation through microbial oxidoreductase: a better strategy to safe environment. Int J Biol Macromol 105:9–16
Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48. https://doi.org/10.1016/j.biortech.2015.08.085
Kirk PM, Canon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi. CAB International, Wallingford
Knežević A, Milovanović I, Stajić M, Lončar N, Brčeski I, Vukojević J, Cilerdžić J (2013) Lignin degradation by selected fungal species. Bioresour Technol 138:117–123
Koo BW, Kim HY, Park N, Lee SM, Yeo H, Choi IG (2011) Organosolv pretreatment of Liriodendron tulipifera and simultaneous saccharification and fermentation for bioethanol production. Biomass Bioenergy 35:1833–1840
Krogell J, Korotkova E, Eränen K, Pranovich A, Salmi T, Murzin D, Willför S (2013) Intensification of hemicellulose hot-water extraction from spruce wood in a batch extractor – effects of wood particle size. Bioresour Technol 143:212–220
Kumar KS, Manimaran A, Permaul K, Singh S (2009) Production of β-xylanase by a Thermomyces lanuginosus MC 134 mutant on corn cobs and its application in biobleaching of bagasse pulp. J Biosci Bioeng 107:494–498
Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sust Energ Rev 90:877–891. https://doi.org/10.1016/j.rser.2018.03.111
Lee HV, Hamid SBA, Zain SK (2014) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Scient World J 2014:631013
Leite P, Sousa D, Fernandes H, Ferreira M, Costa AR, Filipe D, Gonçalves M, Peres H, Belo I, Salgado JM (2021) Recent advances in production of lignocellulolytic enzymes by solid-state fermentation of agro-industrial wastes. Curr Opin Green Sustain Chem 21:100407
Liu J, Cao X (2013) Biodegradation of microcrystalline cellulose in pH–pH recyclable aqueous two-phase systems with water-soluble immobilized celulase. Biochem Eng J 79:136–143
Liu X, Kokare C (2017) Microbial enzymes of use in industry. Biotechnol Microb Enzym:267–298. https://doi.org/10.1016/b978-0-12-803725-6.00011-x
Lorenzo-Hernando A, Martín-Juárez J, Bolado-Rodríguez S (2018) Study of steam explosion pretreatment and preservation methods of commercial cellulose. Carbohydr Polym 191:234–241. https://doi.org/10.1016/j.carbpol.2018.03.021
Llaubères C-R-M (2010) Enzymes and wine quality. Manag Wine Qual 93–132. https://doi.org/10.1533/9781845699987.1.93
Maitan-Alfenas GP, Visser EM, Guimarães VM (2015) Enzymatic hydrolysis of lignocellulosic biomass: converting food waste in valuable products. Curr Opin Food Sci 1:44–49
Manubolu M, Goodla L, Pathakoti K, Malmlöf K (2018) Enzymes as direct decontaminating agents—mycotoxins. Enzym Hum Anim Nutrtion:313–330. https://doi.org/10.1016/b978-0-12-805419-2.00016-2
Market Analysis Report (2020) Enzymes market size, share & trends analysis report by application (industrial enzymes, specialty enzymes), by product (carbohydrase, proteases, lipases), by source, by region, and segment forecasts, 2020–2027. https://www.grandviewresearch.com/industry-analysis/enzymes-industry. Accessed 10 Jan 2020
Martín C, Wu G, Wang Z, Stagge S, Jönsson LJ (2018) Formation of microbial inhibitors in steam-explosion pretreatment of softwood impregnated with sulfuric acid and sulfur dioxide. Bioresour Technol 262:242–250. https://doi.org/10.1016/j.biortech.2018.04.074
Martinelli LA, Naylor R, Vitousek PM, Moutinho P (2010) Agriculture in Brazil: impacts, costs, and opportunities for a sustainable future. Curr Opin Environ Sustain 2:431–438
Martins S, Mussatto SI, Martínez-Avila G, Montañez-Saenz J, Aguilar CN, Teixeira JA (2011) Bioactive phenolic compounds: production and extraction by solid-state fermentation. A review. Biotechnol Adv 29(3):365–373. https://doi.org/10.1016/j.biotechadv.2011.01.008
McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83(1):37–46. https://doi.org/10.1016/s0960-8524(01)00118-3
Mehrotra P (2016) Biosensors and their applications – a review. J Oral Biol Craniofac Res 6(2):153–159. https://doi.org/10.1016/j.jobcr.2015.12.002
Menezes CR, Barreto AR (2015) Biodegradation of lignocellulosic wastes by basidiomycetes fungi: characterization of waste and study of fungal enzyme complex. Revista do Centro de Ciências Naturais e Exatas – UFSM Santa Maria. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental 19(2):1365–1391. e-ISSN 2236 1170
Menezes DB, Brazil OAV, Romanholo-Ferreira LF, de Lourdes TM, Polizeli M, Ruzene DS, Silva DP, Hernández-Macedo ML (2017) Prospecting fungal ligninases using corncob lignocellulosic fractions. Cellulose 24(10):4355–4365. https://doi.org/10.1007/s10570-017-1427-2
Mesa L, Gonzalez E, Cara C, González M, Castro E, Mussattoc SI (2011) The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chem Eng J 168:1157–1162
Miao Z, Shastri Y, Grift TE, Hansen AC, Ting KC (2012) Lignocellulosic biomass feedstock transportation alternatives, logistics, equipment configurations, and modeling. Biofuels Bioprod Biorefin 6(3):351–362. https://doi.org/10.1002/bbb.1322
Monteiro VN, Silva RN (2009) Aplicações industriais da biotecnologia enzimática. Revista Processos Químicos, Goiânia 3(5). ISSN 1981-8521
Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93
Moreno CM, Becerra AG, Santos MJB (2004) Tratamientos biológicos de suelos contaminados: contaminación por hidrocarburos. Aplicaciones de hongos en tratamientos de biorrecuperación Revista Iberoamericana de Micologia 21:103–120
Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686. https://doi.org/10.1016/j.biortech.2004.06.025
Muguruma H (2017) Biosensors: enzyme immobilization chemistry. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. https://doi.org/10.1016/b978-0-12-409547-2.13486-9
Mushtaq M (2018) Extraction of fruit juice. Fruit Juices:131–159. https://doi.org/10.1016/b978-0-12-802230-6.00008-4
Najafpour GD (2015) Fermentation process control. Biochem Eng Biotechnol:103–125. https://doi.org/10.1016/b978-0-444-63357-6.00004-3
Ole, Kirk Torben Vedel, Borchert Claus Crone, Fuglsang (2002) Industrial enzyme applications. Current Opinion in Biotechnology 13(4) 345-351 10.1016/S0958-1669(02)00328-2
Pacheco JG, Barroso MF, Nouws HPA, Morais S, Delerue-Matos C (2017) Biosensors. In: Current developments in biotechnology and bioengineering, pp 627–648. https://doi.org/10.1016/b978-0-444-63663-8.00021-5
Pande V, Pandey SC, Sati D, Pande V, Samant M (2020) Bioremediation: an emerging effective approach towards environment restoration. Environ Sustain 3:91–103
Patel AK, Singhania RR, Pandey A (2017) Production, purification, and application of microbial enzymes. In: Brahmachari G (ed) Biotechnology of microbial enzymes: production, biocatalysis and industrial applications. Academic, Cambridge, pp 13–41
Pellera F-M, Gidarakos E (2017) Microwave pretreatment of lignocellulosic agroindustrial waste for methane production. J Environ Chem Eng 5(1):352–365. https://doi.org/10.1016/j.jece.2016.12.009
Pereira N Jr, Couto MAPG, Anna LMMS (2008) Biomass of lignocellulosic composition for fuel ethanol production within the context of biorefinery. Ser Biotechnol 2:1–47. ISBN 978-85-903967-3-4
Phitsuwan P, Sakka K, Ratanakhanokchai K (2013) Improvement of lignocellulosic biomass in planta: a review of feedstocks, biomass recalcitrance, and strategic manipulation of ideal plants designed for ethanol production and processability. Biomass Bioenergy 58:390–405
Prasad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl 50(1):1–39. https://doi.org/10.1016/j.resconrec.2006.05.007
Quang PS, Le TTT, Le VVM (2014) Optimisation of ultrasonic treatment of apple (Malus domestica) mash in the extraction of juice with high antioxidant content. IOSR J Eng 04(12):18–21
Rao M, Scelza R, Scotti R, Gianfreda L (2010) Role of enzymes in the remediation of polluted environments. J Soil Sci Plant Nutr 10(3). https://doi.org/10.4067/s0718-95162010000100008
Rao MA, Scelza R, Acevedo F, Diez MC, Gianfreda L (2014) Enzymes as useful tools for environmental purposes. Chemosphere 107:145–162. https://doi.org/10.1016/j.chemosphere.2013.12.059
Ravindran A, Adav SS, Sze SK (2012) Characterization of extracellular lignocellulolytic enzymes of Coniochaeta sp. during corn Stover bioconversion. Process Biochem 47:2440–2448
Rodrigues HCSR, Carvalho AL, Souza CO, Umsza-Guez MA (2020) Evolution of world and Brazilian markets for enzymes produced by solid-state fermentation: a patent analysis. Recent Pat Biotechnol 14:112–120
Rodríguez NP, García-Bernet D, Domínguez JM (2017) Extrusion and enzymatic hydrolysis as pretreatments on corn cob for biogas production. Renew Energy 107:597–603. https://doi.org/10.1016/j.renene.2017.02.030
Rubilar O, Diez MC, Gianfreda L (2008) Transformation of chlorinated phenolic compounds by white rot fungi. Crit Rev Environ Sci Technol 38(4):227–268. https://doi.org/10.1080/10643380701413351
Ruqayyah TID, Jamal P, Alam MZ, Mirghani MES (2013) Biodegradation potential and ligninolytic enzyme activity of two locally isolated Panus tigrinus strains on selected agro-industrial wastes. J Environ Manag 118:115–121
Ruzene DS, Silva DP, Vicente AA, Gonçalves AR, Teixeira JA (2008) An alternative application to the Portuguese agro-industrial residue: wheat straw. Appl Biochem Biotechnol 147:85–96
Sahoo S, Seydibeyoglu MO, Mohanty AK, Misra M (2011) Characterization of industrial lignins for their utilization in future value added applications. Biomass Bioenergy 35:4230–4237
Saini R, Saini JK, Adsul M, Patel AK, Mathur A, Tuli D, Singhania RR (2015) Enhanced cellulase production by Penicillium oxalicum for bio-ethanol application. Bioresour Technol 188:240–246. https://doi.org/10.1016/j.biortech.2015.01.048
Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194. https://doi.org/10.1016/j.biotechadv.2008.11.001
Santos ALF, Kawase KYF, Coelho GLV (2011) Enzymatic saccharification of lignocellulosic materials after treatment with supercritical carbon dioxide. J Supercrit Fluids 56(3):277–282. https://doi.org/10.1016/j.supflu.2010.10.044
Santos FA, Queiróz JH, Colodette JL, Fernandes SA, Guimarães VM, Rezende ST (2012) Potential of sugarcane straw for ethanol production. Química Nova 35(5)
Sarrouh B, Santos TM, Miyoshi A, Dias R, Azevedo V (2012) Up-to-date insight on industrial enzymes applications and global market. J Bioprocess Biotechnol s1(01). https://doi.org/10.4172/2155-9821.s4-002
Seoud OAE, Koschella A, Fidale LC, Dorn S, Heinze T (2007) Applications of ionic liquids in carbohydrate chemistry: a window of opportunities. Biomacromolecules 8:2629–2647
Sharma A, Pareek V, Zhang D (2015) Biomass pyrolysis—a review of modelling, process parameters and catalytic studies. Renew Sust Energ Rev 50:1081–1096. https://doi.org/10.1016/j.rser.2015.04.193
Sharma B, Dangi AK, Shukla P (2018) Contemporary enzyme based technologies for bioremediation: a review. J Environ Manag 210:10–22. https://doi.org/10.1016/j.jenvman.2017.12.075
Sharma H, Upadhyay SK (2020) Enzymes and their production strategies. In: Pandey A, Larroche L (eds) Biomass, biofuels, biochemicals. Elsevier, Amsterdam, pp 31–48
Shirkavand E, Baroutian S, Gapes DJ, Young BR (2016) Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment – a review. Renew Sust Energ Rev 54:217–234. https://doi.org/10.1016/j.rser.2015.10.003
Si J, Li X-C, Cui B-K (2013) Decolorization of heterocycle dye neutral red by white-rot fungus Perenniporia subacida. Desalin Water Treat 52(28–30):5594–5604. https://doi.org/10.1080/19443994.2013.814008
Silva R, Haraguchi SK, Muniz EC, Rubira AF (2009) Aplicações de fibras lignocelulósicas na química de polímeros e compósitos. Química Nova 32:661–671
Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass – an overview. Bioresour Technol 199:76–82. https://doi.org/10.1016/j.biortech.2015.08.030
Singhania RR, Patel AK, Soccol CR, Pandey A (2009) Recent advances in solid-state fermentation. Biochem Eng J 44(1):13–18. https://doi.org/10.1016/j.bej.2008.10.019
Sipos B (2010) Conversion of lignocelluloses to fermentable sugars production for ethanol. Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, p 201
Sobrevilla VJ, Boone-Villa D, Rodriguez R, Martinez-Hernandez JL, Aguilar CN (2015) Microbial biosynthesis of enzymes for food applications. In: Improving and tailoring enzymes for food quality and functionality, pp 85–99
Soccol CR, Costa ESFD, Letti LAJ, Karp SG, Woiciechowski AL, Vandenberghe, L. P. DS. (2017) Recent developments and innovations in solid state fermentation. Biotechnol Res Innovat 1(1):52–71. https://doi.org/10.1016/j.biori.2017.01.002
Song H, Ni Y (2013) Kokot S.a novel electrochemical biosensor based on the hemin-graphene nano-sheets and goldnano-particles hybrid film for the analysis of hydrogen peroxide. Anal Chim Acta 788:24–31
Souza JB, Michelin M, Amâncio FLR, Brazil OAB, Polizeli MLTM, Ruzene DS, Silva DP, Mendonça MC, López JA (2020) Sunflower stalk as a carbon source inductive for fungal xylanase production. Ind Crop Prod 153:112368
Sun F, Chen H (2008) Organosolv pretreatment by crude glycerol from oleo chemicals industry for enzymatic hydrolysis of wheat straw. Bioresour Technol 99:5474–5479
Sun XF, Wang HH, Jing ZX, Mohanathas R (2013) Hemicellulose-based pH-sensitive and biodegradable hydrogel for controlled drug delivery. Carbohydr Polym 92:1357–1366
Sun Y, Kumar K, Wang L, Gupta J, Sang DCW (2020) Biotechnology for soil decontamination: opportunity, challenges, and prospects for pesticide biodegradation. In: Jones G (ed) Bio-based materials and biotechnologies for eco-efficient construction. Woodhead Publishing, Cambridge, pp 261–283
Sutherland T, Horne I, Weir K, Coppin C, Williams M, Selleck M et al (2004) Enzymatic bioremediation: from enzyme discovery to applications. Clin Exp Pharmacol Physiol 31(11):817–821
Tian S-Q, Zhao R-Y, Chen Z-C (2018) Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials. Renew Sust Energ Rev 91:483–489. https://doi.org/10.1016/j.rser.2018.03.113
Valencia EY, Chambergo FS (2013) Mini-review: Brazilian fungi diversity for biomass degradation. Fungal Genet Biol 60:9–18
Vallero DA (2010) Environmental biotechnology: a biosystems approach. Academic Press. ISBN 0123785510, 9780123785510
Vasco-Correa J, Ge X, Li Y (2016) Biological pretreatment of lignocellulosic biomass. Biomass fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery. pp. 561–585
Wang B, Sain M (2007) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67:2521–2527
Xu J, Krietemeyer EF, Boddu VM, Liu SX, Liu W-C (2018) Production and characterization of cellulose nanofibril (CNF) from agricultural waste corn Stover. Carbohydr Polym 192:202–207. https://doi.org/10.1016/j.carbpol.2018.03.017
Yi J, He T, Jiang Z, Li J, Hu C (2013) AlCl3 catalyzed conversion of hemicellulose in corn Stover. Chin J Catal 34:2146–2152
Yoo CG, Pu Y, Ragauskas AJ (2017) Ionic liquids: promising green solvents for lignocellulosic biomass utilization. Curr Opin Green Sustain Chem 5:5–11
Zhang LM, Yuan TQ, Xu F, Sun RC (2013) Enhanced hydrophobicity and thermal stability of hemicelluloses by butyrylation in [BMIM] Cl ionic liquid. Ind Crop Prod 45:52–57
Zhang Z, Donaldson AA, Ma X (2012) Advancements and future directions in enzyme technology for biomass conversion. Biotechnol Adv 30:913–919
Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53. https://doi.org/10.1016/j.pecs.2014.01.001
Zhou Y, Yuan X, Liang XF, Fang L, Li J, Guo X, Bai X, He S (2013) Enhancement of growth and intestinal flora in grass carp: the effect of exogenous celulase. Aquaculture 416-417:1–7
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Menezes, D.B. et al. (2022). Synthesis of Industrial Enzymes from Lignocellulosic Fractions. In: Mulla, S.I., Bharagava, R.N. (eds) Enzymes for Pollutant Degradation . Microorganisms for Sustainability, vol 30. Springer, Singapore. https://doi.org/10.1007/978-981-16-4574-7_2
Download citation
DOI: https://doi.org/10.1007/978-981-16-4574-7_2
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-4573-0
Online ISBN: 978-981-16-4574-7
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)