Skip to main content

Drug Therapy of Alzheimer’s Disease: Cholinesterase Inhibitors, NMDA Antagonists

  • Chapter
  • First Online:
Autism Spectrum Disorder and Alzheimer's Disease

Abstract

Alzheimer’s disease (AD) is one of the brain’s progressive neuronal diseases named after Aloes Alzheimer, a German physician who first described it in 1906. AD is one of the most widespread forms of dementia, presenting one of the biggest healthcare challenges in developed countries. AD causes a reduction in cognitive function and language ability. Multi-target inhibitors have been developed as AD is a multifactorial disease. There is no effective treatment capable of slowing down disease progression. Recently, the primary focus of research is on novel pharmacotherapies. Several current drugs taken to treat the disease have repulsive side effects and new substitutes. There is no therapy for AD, but medicines are available that are designed to slow disease progression. Various studies have shown that some herbs may improve brain function; however, experimental data is limited to prove that they can treat AD. The objective here is to provide a systematic review of AD’s factors, viz., environmental toxicity and genetic predisposition, and ongoing treatment strategies used to treat it. Additionally, this review presents the current status and future directions for developing novel drugs with pharmacological activity. Evidence about the use of medicinal herbs in treating AD and symptoms related to AD is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alvarez MM, Lozano AS, Gomar FS et al (2015) Non-steroidal anti-inflammatory drugs as a treatment for. Alzheimer’s Dis 32(2):139–147

    Google Scholar 

  • Arnold SE, Hyman BT, Flory J et al (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex 1:103–116

    Article  CAS  PubMed  Google Scholar 

  • Athanasios M, Stefan JK (2016) Neurofibrillary tangles in Alzheimer’s disease: elucidation of the molecular mechanism by immunohistochemistry and tau protein phospho-proteomics. Neural Regen Res 11(10):1579–1581

    Article  Google Scholar 

  • Baldi I, Lebailly P, Mohammed-Brahim B et al (2003) Neurodegenerative diseases and exposure to pesticides in the elderly. Am J Epidemiol 157(5):409–414

    Article  PubMed  Google Scholar 

  • Barnard ND, Bush AI, Ceccarelli A et al (2014) Dietary and lifestyle guidelines for the prevention of Alzheimer’s disease. Neurobiol Aging 35(2):74–S78

    Article  Google Scholar 

  • Barse AV, Chakrabarti T, Ghosh TK et al (2010) Vitellogenin induction and histo-metabolic changes following exposure of Cyprinus carpio to methyl paraben. Asian Aust J Anim Sci 23(12):1557–1565

    Article  CAS  Google Scholar 

  • Basha MR, Wei W, Bakheet SA et al (2005) The fetal basis of amyloidogenesis: exposure to lead and latent overexpression of amyloid precursor protein and β-amyloid in the aging brain. J Neurosci 25(4):823–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baum L, Chan I, Cheung S-K et al (2010) Serum zinc is decreased in Alzheimer’s disease and serum arsenic correlates positively with cognitive ability. Biometals 23(1):173–179

    Article  CAS  PubMed  Google Scholar 

  • Bellenguez CL, Grenier-Boley B, Lambert JC (2020) Genetics of Alzheimer’s disease: where we are, and where we are going. Curr Opin Neurobiol 61:40–48

    Article  CAS  PubMed  Google Scholar 

  • Bilge S, Ilkay O (2005) Discovery of drug candidates from some. Turkish plants and conservation of biodiversity. Pure Appl Chem 77:53–64

    Article  Google Scholar 

  • Blalock EM, Phelps JT, Pancani T et al (2010) Effects of longterm pioglitazone treatment on peripheral and central markers of aging. PLoS One 5(4):e10405

    Article  PubMed  PubMed Central  Google Scholar 

  • Burns A, Iliffe S (2009) Alzheimer’s disease. BMJ 338:b158

    Article  PubMed  Google Scholar 

  • Cacace R, Sleegers K, Van Broeckhoven C (2016) Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimers Dement 12:733–748

    Article  PubMed  Google Scholar 

  • Campbell A (2002) The potential role of aluminium in Alzheimer’s disease. Nephrol Dialysis Transplant 17(2):17–20

    Article  CAS  Google Scholar 

  • Cardoso BR, Cominetti C, Cozzolino SMF (2013) Importance and management of micronutrient deficiencies in patients with Alzheimer’s disease. Clin Intervent Aging 8:531–542

    Article  CAS  Google Scholar 

  • Castello MA, Soriano S (2013) On the origin of Alzheimer’s disease. Trials and tribulations of the amyloid hypothesis. Ageing Res Rev 13(1):10–12

    PubMed  Google Scholar 

  • Chen CT, Jin TY, Hui FW et al (2014) Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis 41(2):615–631

    Article  Google Scholar 

  • Chiang K, Koo EH (2014) Emerging therapeutics for Alzheimer’s disease. Annu Rev Pharmacol Toxicol 54:381–405

    Article  CAS  PubMed  Google Scholar 

  • Clarke JR, Lyra e Silva NM, Figueiredo CP et al (2015) Alzheimer-associated A𝛽 oligomers impact the central nervous system to induce peripheral metabolic deregulation. EMBO Mol Med 7(2):190–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cochran JN, Hall AM, Roberson ED (2014) The dendritic hypothesis for Alzheimer’s disease pathophysiology. Brain Res Bull 103:18–28

    Article  CAS  PubMed  Google Scholar 

  • Cooper JK (2014) Nutrition and the brain: what advice should we give? Neurobiol Aging 35(2):79–S83

    Article  Google Scholar 

  • Cowan CM, Mudher A (2013) Are tau aggregates toxic or protective in tauopathies? Front Neurol 4:114

    Article  PubMed  PubMed Central  Google Scholar 

  • De Felice FG (2013a) Alzheimer’s disease and insulin resistance: translating basic science into clinical applications. J Clin Investig 123(2):531–539

    Article  PubMed  PubMed Central  Google Scholar 

  • De Felice FG (2013b) Connecting type 2 diabetes to Alzheimer’s disease. Expert Rev Neurother 13(12):1297–1299

    Article  PubMed  Google Scholar 

  • Drachman DA (2014) The amyloid hypothesis, time to move on: amyloid is the downstream result, not cause, of Alzheimer’s disease. Alzheimer’s Dement 10(3):372–380

    Article  Google Scholar 

  • Eriksen JL, Sagi SA, Smith TE et al (2003) NSAIDs and enantiomers of flurbiprofen target 𝛾-secretase and lower A𝛽42 in vivo. J Clin Invest 112(3):440–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans DA, Funkenstein HH, Albert MS et al (1989) Prevalence of Alzheimer’s disease in a community population of older persons: higher than previously reported. JAMA 262:2551–2556

    Article  CAS  PubMed  Google Scholar 

  • Farrer LA, Cupples LA, Haines JL et al (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: a meta-analysis. JAMA 278:1349–1356

    Article  CAS  PubMed  Google Scholar 

  • Giacobini E (2000) Cholinesterase inhibitors: from the Calabar bean to Alzheimer’s therapy. In: Giacobini E (ed) Cholinesterases and cholinesterase inhibitors. Martin Dubitz, London, pp 181–227

    Google Scholar 

  • Gold M, Alderton C, Zvartau-Hind M et al (2010) Rosiglitazone monotherapy in mild-to-moderate Alzheimer’s disease: results from a randomized, double-blind, placebo-controlled phase III study. Dement Geriatr Cogn Disord 30(2):131–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gureje O, Ogunniyi A, Baiyewu O et al (2006) APOE e4 is not associated with Alzheimer’s disease in elderly Nigerians. Ann Neurol 59:182–185

    Article  PubMed  PubMed Central  Google Scholar 

  • Haass C, Kaether C, Thinakaran G (2012) Trafficking and proteolytic processing of APP. Cold Spring Harbor Perspect Med 2(5):a006270

    Article  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356

    Article  CAS  PubMed  Google Scholar 

  • Harold D, Abraham R, Hollingworth P et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humpel C (2011) Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol 29(1):26–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamel F, Hoppin JA (2004) Association of pesticide exposure with neurologic dysfunction and disease. Environ Health Perspect 112(9):950–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konishi K, Hori K, Tani M et al (2015) Hypothesis of endogenous anticholinergic activity in Alzheimer’s disease. Neurodegener Dis 15(3):149–156

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Christopher JS, Edward JO (2011) Kinetics of acetylcholinesterase inhibition by an aqueous extract of Withania somnifera roots. Int J Pharm Sci Res 2:1188–1192

    Google Scholar 

  • Lambert J-C, Heath S, Even G et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41:1094–1099

    Article  CAS  PubMed  Google Scholar 

  • Lannert H, Hoyer S (1998) Intracerebroventricular administration of streptozotocin causes long term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci 112:1199–1208

    Article  CAS  PubMed  Google Scholar 

  • Lourenco MV, Clarke JR, Frozza RL et al (2013) TNF-𝛼 mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer’s 𝛽-amyloid oligomers in mice and monkeys. Cell Metab 18(6):831–843

    Article  CAS  PubMed  Google Scholar 

  • Lourenco MV, Ferreira ST, De Felice FG (2015) Neuronal stress signaling and eIF2𝛼 phosphorylation as molecular links between Alzheimer’s disease and diabetes. Prog Neurobiol 129:37–57

    Article  CAS  PubMed  Google Scholar 

  • Mi W, Wijk NV, Cansev M (2013) Nutritional approaches in the risk reduction and management of Alzheimer’s disease. Nutrition 29(9):1080–1089

    Article  CAS  PubMed  Google Scholar 

  • Montgomery SA, Thal LJ, Amrein R (2003) Meta-analysis of double blind randomized controlled clinical trials of acetyl-L-carnitine versus placebo in the treatment of mild cognitive impairment and mild Alzheimer’s disease. Int Clin Psychopharmacol 18:61–71

    Article  PubMed  Google Scholar 

  • Mucke L, Selkoe DJ (2012) Neurotoxicity of amyloid 𝛽-protein: synaptic and network dysfunction. Cold Spring Harbor Perspect Med 2(7):a006338

    Article  Google Scholar 

  • Nalivaeva NN, Fisk LR, Belyaev ND et al (2008) Amyloid-degrading enzymes as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res 5(2):212–224

    Article  CAS  PubMed  Google Scholar 

  • Napryeyenko O, Borzenko I (2007) Ginkgo biloba special extract in dementia with neuropsychiatric features. A randomised, placebo-controlled, double-blind clinical trial. Arzneimittelforschung 57:4–11

    CAS  PubMed  Google Scholar 

  • Park CH, Kim SH, Choi W et al (1996) Novel anticholinesterase and antiamnesic activities of dehydroevodiamine, a constituent of Evodia ruraecarpa. Planta Med 62:405–409

    Article  CAS  PubMed  Google Scholar 

  • Paul TF (2005) The interplay of neurotransmitters in Alzheimer’s disease. CNS Spectr 10(11):6–9

    Google Scholar 

  • Perl DP (2010) Neuropathology of Alzheimer’s disease. Mt Sinai J Med 77(1):32–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Perry EK (1986) The cholinergic hypothesis ten years on. Br Med Bull 42:63–69

    Article  CAS  PubMed  Google Scholar 

  • Ramirez MJ, Lai MKP, Tordera RM et al (2014) Serotonergic therapies for cognitive symptoms in Alzheimer’s disease: rationale and current status. Drugs 74(7):729–736

    Article  CAS  PubMed  Google Scholar 

  • Risner ME, Saunders AM, Altman JF et al (2006) Efficacy of rosiglitazone in a genetically defined population with mild-tomoderate Alzheimer’s disease. Pharmacogenomics J 6(4):246–254

    Article  CAS  PubMed  Google Scholar 

  • Rubio J, Qiong W, Liu X et al (2011) Aqueous extract of black maca (Lepidium meyenii) on memory impairment induced by ovariectomy in mice. Evid Based Complement Alternat Med 2011:253958

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandhu JS, Shah B, Shenoy S (2010) Effects of Withania somnifera (Ashwagandha) and Terminalia arjuna (Arjuna) on physical performance and cardiorespiratory endurance in healthy young adults. Int J Ayurveda Res 1:144–149

    Article  PubMed  PubMed Central  Google Scholar 

  • Santana I, Farinha F, Freitas S et al (2015) The epidemiology of dementia and Alzheimer disease in portugal: estimations of prevalence and treatment-costs. Acta Med Port 28(2):182–188

    Article  PubMed  Google Scholar 

  • Sato T, Hanyu H, Hirao K (2011) Efficacy of PPAR-𝛾 agonist pioglitazone in mild Alzheimer disease. Neurobiol Aging 32(9):1626–1633

    Article  CAS  PubMed  Google Scholar 

  • Shefet CL, Benhar I (2015) Antibody-targeted drugs and drug resistance—challenges and solutions. Drug Resist Updat 18:36–46

    Article  Google Scholar 

  • Shih RA, Hu H, Weisskopf MG et al (2007) Cumulative lead dose and cognitive function in adults: a review of studies that measured both blood lead and bone lead. Environ Health Perspect 115(3):483–492

    Article  CAS  PubMed  Google Scholar 

  • Shirazi SK, Wood JG (1993) The protein tyrosine kinase, fyn, in Alzheimer’s disease pathology. Neuroreport 4(4):435–437

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Chhillar N, Banerjee B et al (2013) Organochlorine pesticide levels and risk of Alzheimer’s disease in north Indian population. Hum Exp Toxicol 32(1):24–30

    Article  CAS  PubMed  Google Scholar 

  • Sparks DL, Schreurs BG (2003) Trace amounts of copper in water induce β-amyloid plaques and learning deficits in a rabbit model of Alzheimer’s disease. Proc Natl Acad Sci U S A 100(19):11065–11069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strittmatter WJ, Saunders AM, Schmechel D et al (1993) Apolipoprotein E: high-avidity binding to b-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A 90:8098–8102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tata AM, Velluto L, Angelo CD et al (2014) Cholinergic system dysfunction and neurodegenerative diseases: cause or effect? CNS Neurol Disord Drug Targets 13(7):1294–1303

    Article  CAS  PubMed  Google Scholar 

  • Thompson CM, Markesbery WR, Ehmann WD et al (1988) Regional brain trace-element studies in Alzheimer’s disease. Neurotoxicology 9(1):1–7

    CAS  PubMed  Google Scholar 

  • Tuszynski MH, Yang JH, Barba D et al (2015) Nerve growth factor gene therapy: activation of neuronal responses in Alzheimer disease. JAMA Neurol 72(10):1139–1147

    Article  PubMed  PubMed Central  Google Scholar 

  • Veldhoen N, Skirrow RC, Osachoff H et al (2006) The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development. Aquat Toxicol 80(3):217–227

    Article  CAS  PubMed  Google Scholar 

  • Viberg H, Fredriksson A, Eriksson P (2003) Neonatal exposure to polybrominated diphenyl ether (PBDE 153) disrupts spontaneous behaviour, impairs learning and memory, and decreases hippocampal cholinergic receptors in adult mice. Toxicol Appl Pharmacol 192(2):95–106

    Article  CAS  PubMed  Google Scholar 

  • Wallace TL, Bertrand D (2013) Importance of the nicotinic acetylcholine receptor system in the prefrontal cortex. Biochem Pharmacol 85(12):1713–1720

    Article  CAS  PubMed  Google Scholar 

  • Wallon D, Rousseau S, Rovelet-Lecrux A et al (2012) The French series of autosomal dominant early onset Alzheimer’s disease cases: mutation spectrum and cerebrospinal fluid biomarkers. J Alzheimer’s Dis 30(4):847–856

    Article  CAS  Google Scholar 

  • Weinreb O, Amit T, Bar-Am O et al (2011) A novel anti-Alzheimer’s disease drug, ladostigil: neuroprotective, multimodal brain-selective monoamine oxidase and cholinesterase inhibitor. Int Rev Neurobiol 100:191–215

    Article  CAS  PubMed  Google Scholar 

  • Weinreb O, Amit T, Bar-Am O et al (2012) Ladostigil: a novel multimodal neuroprotective drug with cholinesterase and brain-selectivemonoamine oxidase inhibitory activities for Alzheimer’s disease treatment. Curr Drug Targets 13(4):483–494

    Article  CAS  PubMed  Google Scholar 

  • Weiss B (2007) Can endocrine disruptors influence neuroplasticity in the aging brain? Neurotoxicology 28(5):938–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West S, Bhugra (2015) Emerging drug targets for A𝛽 and tau in Alzheimer’s disease: a systematic review. Br J Clin Pharmacol 80(2):221–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson D, Windfeld K, Jorgensen EC (2014) Safety and efficacy of idalopirdine, a 5-HT6 receptor antagonist, in patients with moderate Alzheimer’s disease (LADDER): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol 13(11):1092–1099

    Article  CAS  PubMed  Google Scholar 

  • Woolley ML, Bentley JC, Sleight AJ (2001) A role for 5-ht 6 receptors in retention of spatial learning in the Morris water maze. Neuropharmacology 41(2):210–219

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Rosa-Neto P, Hsiung GY et al (2012) Early-onset familial Alzheimer’s disease (EOFAD). Can J Neurol Sci 39(4):436–445

    Article  PubMed  Google Scholar 

  • Yan R, Vassar R (2014) Targeting the beta secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol 13:319–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Lim GP, Begum AN et al (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Belrose J, Trepanier CH et al (2011) Fyn, a potential target for Alzheimer’s disease. J Alzheimer’s Dis 27(2):243–252

    Article  CAS  Google Scholar 

  • Zaman T (2010) The prevalence and environmental impact of single use plastic products. Public health management & policy: an online textbook, 11th edn. 23:2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nafees, S., Akram, M.F., Khan, M.A. (2021). Drug Therapy of Alzheimer’s Disease: Cholinesterase Inhibitors, NMDA Antagonists. In: Md Ashraf, G., Alexiou, A. (eds) Autism Spectrum Disorder and Alzheimer's Disease . Springer, Singapore. https://doi.org/10.1007/978-981-16-4558-7_6

Download citation

Publish with us

Policies and ethics