Skip to main content

Mitochondrial Dysfunction: A Key Player in the Pathogenesis of Autism Spectrum Disorders and Alzheimer’s Disease

  • Chapter
  • First Online:
Autism Spectrum Disorder and Alzheimer's Disease

Abstract

Increasing evidence has pinpointed that loss of mitochondrial function or regulation is a critical player toward the pathogenesis of various metabolic, neurodevelopmental, and neurodegenerative disorders, including autism spectrum disorders (ASD) and Alzheimer’s disease (AD). The lacuna in understanding these diseases’ underlying biology is that pathology develops through the interaction of various biological pathways rather than a defined mechanism. Mitochondria are dynamic organelles that perform diverse functions, including cellular energy production, calcium homeostasis, apoptosis, and innate immune regulation. Hence, mitochondria integrate various cellular pathways, and any exogenous or endogenous perturbation may result in their dysfunction. Herein, we explore the latest research insights that have evolved our understanding of ASD and AD pathogenesis with the perspective of mitochondrial dysregulation as the underlying phenomenon. We discuss the pathological relevance of cause and effect of mitochondrial dysregulation, such as increased reactive oxygen species (ROS) production, mitochondrial DNA damage, aberrant immune responses, impaired energy metabolism, and altered gut microbiome in the etiology of ASD and AD. Being at the center stage, mitochondria have emerged as a novel target with considerable therapeutic potential, which can be exploited to delay, manage, or treat ASD, AD, and other neurological disorders. We also discuss the novel therapeutic options such as H2S therapy, dynamic microbiome modulation, ketogenic diet, and cofactor therapy that are emerging as a plausible treatment regimen and have shown favorable outcomes in initial studies. Hence, this article summarizes the current understanding of the functional and structural disturbances in the mitochondria that lead to ASD and AD and could be harnessed for better diagnostic and prognostic outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JB, Audhya T, McDonough-Means S, Rubin RA, Quig D, Geis E, Gehn E, Loresto M, Mitchell J, Atwood S (2011) Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity. Nutr Metab 8(1):34

    Google Scholar 

  • Alexiou A, Nizami B, Khan FI, Soursou G, Vairaktarakis C, Chatzichronis S, Tsiamis V, Manztavinos V et al (2018) Mitochondrial dynamics and proteins related to neurodegenerative diseases. Curr Protein Pept Sci 19(9):850–857

    CAS  PubMed  Google Scholar 

  • Bayer TA (2015) Proteinopathies, a core concept for understanding and ultimately treating degenerative disorders? Eur Neuropsychopharmacol 25(5):713–724

    CAS  PubMed  Google Scholar 

  • Beck S, Mufson EJ, Counts SE (2016) Evidence for mitochondrial UPR gene activation in familial and sporadic Alzheimer’s disease. Curr Alzheimer Res 13(6):610–614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1(1):11–21

    CAS  PubMed  Google Scholar 

  • Bhattacharjee S, Lukiw WJ (2013) Alzheimer’s disease and the microbiome. Front Cell Neurosci 7:153

    PubMed  PubMed Central  Google Scholar 

  • Bjørklund G, Tinkov AA, Hosnedlová B, Kizek R, Ajsuvakova OP, Chirumbolo S, Skalnaya MG, Peana M, Dadar M, El-Ansary A (2020) The role of glutathione redox imbalance in autism spectrum disorder: a review. Free Radic Biol Med 160:149–162

    PubMed  Google Scholar 

  • Bolotta A, Battistelli M, Falcieri E, Ghezzo A, Manara MC, Manfredini S, Marini M, Posar A, Visconti P, Abruzzo PM (2018) Oxidative stress in autistic children alters erythrocyte shape in the absence of quantitative protein alterations and of loss of membrane phospholipid asymmetry. Oxidative Med Cell Longev 2018

    Google Scholar 

  • Bonda DJ, Wang X, Lee H-G, Smith MA, Perry G, Zhu X (2014) Neuronal failure in Alzheimer’s disease: a view through the oxidative stress looking-glass. Neurosci Bull 30(2):243–252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burokas A, Moloney RD, Dinan TG, Cryan JF (2015) Microbiota regulation of the mammalian gut–brain axis. Adv Appl Microbiol 91:1–62

    CAS  PubMed  Google Scholar 

  • Camandola S, Mattson MP (2011) Aberrant subcellular neuronal calcium regulation in aging and Alzheimer’s disease. Biochim Biophys Acta (BBA) Mol Cell Res 1813(5):965–973

    CAS  Google Scholar 

  • Cao X, Liu K, Liu J, Liu Y-W, Xu L, Wang H, Zhu Y, Wang P, Li Z, Wen J (2021) Dysbiotic gut microbiota and dysregulation of cytokine profile in children and teens with autism spectrum disorder. Front Neurosci 15

    Google Scholar 

  • Cardoso S, Carvalho C, Correia SC, Seiça RM, Moreira PI (2016) Alzheimer’s disease: from mitochondrial perturbations to mitochondrial medicine. Brain Pathol 26(5):632–647

    PubMed  PubMed Central  Google Scholar 

  • Casanova R, Varma S, Simpson B, Kim M, An Y, Saldana S, Riveros C, Moscato P, Griswold M, Sonntag D (2016) Blood metabolite markers of preclinical Alzheimer’s disease in two longitudinally followed cohorts of older individuals. Alzheimers Dement 12(7):815–822

    PubMed  PubMed Central  Google Scholar 

  • Celsi F, Pizzo P, Brini M, Leo S, Fotino C, Pinton P, Rizzuto R (2009) Mitochondria, calcium and cell death: a deadly triad in neurodegeneration. Biochim Biophys Acta (BBA) Bioenerget 1787(5):335–344

    CAS  Google Scholar 

  • Chalkia D, Singh LN, Leipzig J, Lvova M, Derbeneva O, Lakatos A, Hadley D, Hakonarson H, Wallace DC (2017) Association between mitochondrial DNA haplogroup variation and autism spectrum disorders. JAMA Psychiat 74(11):1161–1168

    Google Scholar 

  • Chen Y, Zhou Z, Min W (2018) Mitochondria, oxidative stress and innate immunity. Front Physiol 9:1487

    PubMed  PubMed Central  Google Scholar 

  • Chiarotti F, Venerosi A (2020) Epidemiology of autism spectrum disorders: a review of worldwide prevalence estimates since 2014. Brain Sci 10(5):274

    PubMed Central  Google Scholar 

  • Cook EH Jr, Lindgren V, Leventhal BL, Courchesne R, Lincoln A, Shulman C, Lord C, Courchesne E (1997) Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. Am J Hum Genet 60(4):928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deepa SS, Bhaskaran S, Ranjit R, Qaisar R, Nair BC, Liu Y, Walsh ME, Fok WC, Van Remmen H (2016) Down-regulation of the mitochondrial matrix peptidase ClpP in muscle cells causes mitochondrial dysfunction and decreases cell proliferation. Free Radic Biol Med 91:281–292

    CAS  PubMed  Google Scholar 

  • Delhey L, Kilinc EN, Yin L, Slattery J, Tippett M, Wynne R, Rose S, Kahler S, Damle S, Legido A (2017) Bioenergetic variation is related to autism symptomatology. Metab Brain Dis 32(6):2021–2031

    CAS  PubMed  PubMed Central  Google Scholar 

  • Demarquoy C, Demarquoy J (2019) Autism and carnitine: a possible link. World J Biol Chem 10(1):7

    PubMed  PubMed Central  Google Scholar 

  • Edmonson C, Ziats MN, Rennert OM (2014) Altered glial marker expression in autistic post-mortem prefrontal cortex and cerebellum. Mol Autism 5(1):3

    PubMed  PubMed Central  Google Scholar 

  • Fatima S, Hu X, Gong R-H, Huang C, Chen M, Wong HLX, Bian Z, Kwan HY (2019) Palmitic acid is an intracellular signaling molecule involved in disease development. Cell Mol Life Sci 76(13):2547–2557

    CAS  PubMed  Google Scholar 

  • Folisi C (2015) Oxidative stress and anti-oxidant response in allergen, virus, and corticosteroids withdrawal-induced asthma exacerbation

    Google Scholar 

  • Frye RE (2020) Mitochondrial dysfunction in autism spectrum disorder: unique abnormalities and targeted treatments. Semin Pediatr Neurol 35:100829

    PubMed  Google Scholar 

  • Frye RE, Naviaux RK (2011) Autistic disorder with complex IV overactivity: a new mitochondrial syndrome. J Pediatr Neurol 9(4):427–434

    Google Scholar 

  • Frye RE, Melnyk S, MacFabe DF (2013) Unique acyl-carnitine profiles are potential biomarkers for acquired mitochondrial disease in autism spectrum disorder. Transl Psychiatry 3(1):e220–e220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT, Philpott DJ, MacQueen G, Sherman PM (2011) Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60(3):307–317

    PubMed  Google Scholar 

  • Giorgi C, Agnoletto C, Bononi A, Bonora M, De Marchi E, Marchi S, Missiroli S, Patergnani S, Poletti F, Rimessi A (2012) Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion 12(1):77–85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giovinazzo D, Bursac B, Sbodio JI, Nalluru S, Vignane T, Snowman AM, Albacarys LM, Sedlak TW, Torregrossa R, Whiteman M (2021) Hydrogen sulfide is neuroprotective in Alzheimer’s disease by sulfhydrating GSK3β and inhibiting Tau hyperphosphorylation. Proc Natl Acad Sci U S A 118(4)

    Google Scholar 

  • Goo H-G, Jung MK, Han SS, Rhim H, Kang S (2013) HtrA2/Omi deficiency causes damage and mutation of mitochondrial DNA. Biochim Biophys Acta (BBA) Mol Cell Res 1833(8):1866–1875

    CAS  Google Scholar 

  • Granatiero V, Pacifici M, Raffaello A, De Stefani D, Rizzuto R (2019) Overexpression of mitochondrial calcium uniporter causes neuronal death. Oxidative Med Cell Longev 2019

    Google Scholar 

  • Guinane CM, Cotter PD (2013) Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Ther Adv Gastroenterol 6(4):295–308

    Google Scholar 

  • Haran JP, Bhattarai SK, Foley SE, Dutta P, Ward DV, Bucci V, McCormick BA (2019) Alzheimer’s disease microbiome is associated with dysregulation of the anti-inflammatory P-glycoprotein pathway. MBio 10(3)

    Google Scholar 

  • Henderson ST, Vogel JL, Barr LJ, Garvin F, Jones JJ, Costantini LC (2009) Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer's disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr Metab 6(1):31

    Google Scholar 

  • Hernández-López S, Tkatch T, Perez-Garci E, Galarraga E, Bargas J, Hamm H, Surmeier DJ (2000) D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLCβ1–IP3–calcineurin-signaling cascade. J Neurosci 20(24):8987–8995

    PubMed  PubMed Central  Google Scholar 

  • James SJ, Cutler P, Melnyk S, Jernigan S, Janak L, Gaylor DW, Neubrander JA (2004) Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr 80(6):1611–1617

    CAS  PubMed  Google Scholar 

  • Jara C, Aránguiz A, Cerpa W, Tapia-Rojas C, Quintanilla RA (2018) Genetic ablation of tau improves mitochondrial function and cognitive abilities in the hippocampus. Redox Biol 18:279–294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones AW, Yao Z, Vicencio JM, Karkucinska-Wieckowska A, Szabadkai G (2012) PGC-1 family coactivators and cell fate: roles in cancer, neurodegeneration, cardiovascular disease and retrograde mitochondria–nucleus signalling. Mitochondrion 12(1):86–99

    CAS  PubMed  Google Scholar 

  • Kapogiannis D, Mattson MP (2011) Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol 10(2):187–198

    CAS  PubMed  Google Scholar 

  • Khan SA, Khan SA, Narendra AR, Mushtaq G, Zahran SA, Khan S, Kamal MA (2016) Alzheimer’s disease and autistic spectrum disorder: is there any association? CNS Neurol Disord Drug Targets 15(4):390–402

    CAS  PubMed  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795

    CAS  PubMed  Google Scholar 

  • Lou G, Palikaras K, Lautrup S, Scheibye-Knudsen M, Tavernarakis N, Fang EF (2020) Mitophagy and neuroprotection. Trends Mol Med 26(1):8–20

    CAS  PubMed  Google Scholar 

  • MacFabe DF (2015) Enteric short-chain fatty acids: microbial messengers of metabolism, mitochondria, and mind: implications in autism spectrum disorders. Microb Ecol Health Dis 26(1):28177

    PubMed  Google Scholar 

  • Maenner MJ, Shaw KA, Baio J (2020) Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2016. MMWR Surveill Summ 69(4):1

    PubMed  PubMed Central  Google Scholar 

  • Malaguarnera M, Cauli O (2019) Effects of l-carnitine in patients with autism spectrum disorders: review of clinical studies. Molecules 24(23):4262

    CAS  PubMed Central  Google Scholar 

  • Malek M, Hüttemann M, Lee I (2018) Mitochondrial structure, function, and dynamics: the common thread across organs, disease, and aging, Hindawi

    Google Scholar 

  • Martinelli P, Rugarli EI (2010) Emerging roles of mitochondrial proteases in neurodegeneration. Biochim Biophys Acta (BBA) Bioenerget 1797(1):1–10

    CAS  Google Scholar 

  • Mantzavinos V, Alexiou A (2017) Biomarkers for Alzheimer’s disease diagnosis. Curr Alzheimer Res 14(11):1149–1154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Milder J, Patel M (2012) Modulation of oxidative stress and mitochondrial function by the ketogenic diet. Epilepsy Res 100(3):295–303

    CAS  PubMed  Google Scholar 

  • Neher E, Sakaba T (2008) Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59(6):861–872

    CAS  PubMed  Google Scholar 

  • Neufeld K, Kang N, Bienenstock J, Foster JA (2011) Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23(3):255-e119

    Google Scholar 

  • Nguyen RL, Medvedeva YV, Ayyagari TE, Schmunk G, Gargus JJ (2018) Intracellular calcium dysregulation in autism spectrum disorder: an analysis of converging organelle signaling pathways. Biochim Biophys Acta (BBA) Mol Cell Res 1865(11):1718–1732

    CAS  Google Scholar 

  • Noebels J (2017) Precision physiology and rescue of brain ion channel disorders. J Gen Physiol 149(5):533–546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oh M, Kim SA, Yoo HJ (2020) Higher lactate level and lactate-to-pyruvate ratio in autism spectrum disorder. Exp Neurobiol 29(4):314

    PubMed  PubMed Central  Google Scholar 

  • Ohja K, Gozal E, Fahnestock M, Cai L, Cai J, Freedman JH, Switala A, El-Baz A, Barnes GN (2018) Neuroimmunologic and neurotrophic interactions in autism spectrum disorders: relationship to neuroinflammation. NeuroMolecular Med 20(2):161–173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan X, Nasaruddin MB, Elliott CT, McGuinness B, Passmore AP, Kehoe PG, Hölscher C, McClean PL, Graham SF, Green BD (2016) Alzheimer's disease–like pathology has transient effects on the brain and blood metabolome. Neurobiol Aging 38:151–163

    CAS  PubMed  Google Scholar 

  • Pangrazzi L, Balasco L, Bozzi Y (2020) Oxidative stress and immune system dysfunction in autism spectrum disorders. Int J Mol Sci 21(9):3293

    PubMed Central  Google Scholar 

  • Peng Y, Gao P, Shi L, Chen L, Liu J, Long J (2020) Central and peripheral metabolic defects contribute to the pathogenesis of Alzheimer’s disease: targeting mitochondria for diagnosis and prevention. Antioxid Redox Signal 32(16):1188–1236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips NR, Simpkins JW, Roby RK (2014) Mitochondrial DNA deletions in Alzheimer’s brains: a review. Alzheimers Dement 10(3):393–400

    PubMed  Google Scholar 

  • Picard M, McEwen BS (2014) Mitochondria impact brain function and cognition. Proc Natl Acad Sci U S A 111(1):7–8

    CAS  PubMed  Google Scholar 

  • Quiroz JA, Gray NA, Kato T, Manji HK (2008) Mitochondrially mediated plasticity in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology 33(11):2551–2565

    CAS  PubMed  Google Scholar 

  • Qureshi AY, Mueller S, Snyder AZ, Mukherjee P, Berman JI, Roberts TP, Nagarajan SS, Spiro JE, Chung WK, Sherr EH (2014) Opposing brain differences in 16p11. 2 deletion and duplication carriers. J Neurosci 34(34):11199–11211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Remington R, Bechtel C, Larsen D, Samar A, Page R, Morrell C, Shea TB (2016) Maintenance of cognitive performance and mood for individuals with Alzheimer’s disease following consumption of a nutraceutical formulation: a one-year, open-label study. J Alzheimers Dis 51(4):991–995

    CAS  PubMed  Google Scholar 

  • Rose S, Melnyk S, Pavliv O, Bai S, Nick T, Frye R, James S (2012) Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl Psychiatry 2(7):e134–e134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rose S, Niyazov DM, Rossignol DA, Goldenthal M, Kahler SG, Frye RE (2018) Clinical and molecular characteristics of mitochondrial dysfunction in autism spectrum disorder. Mol Diagn Ther 22(5):571–593

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rossignol DA, Frye RE (2012) A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol Psychiatry 17(4):389–401

    CAS  PubMed  Google Scholar 

  • Ruan Y, Li H, Zhang K, Jian F, Tang J, Song Z (2013) Loss of Yme1L perturbates mitochondrial dynamics. Cell Death Dis 4(10):e896–e896

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sackmann C, Hallbeck M (2020) Oligomeric amyloid-β induces early and widespread changes to the proteome in human ipSc-derived neurons. Sci Rep 10(1):1–12

    Google Scholar 

  • Saint-Georges-Chaumet Y, Edeas M (2016) Microbiota–mitochondria inter-talk: consequence for microbiota–host interaction. FEMS Pathog Dis 74(1):ftv096

    Google Scholar 

  • Santiago JA, Potashkin JA (2014) A network approach to clinical intervention in neurodegenerative diseases. Trends Mol Med 20(12):694–703

    PubMed  Google Scholar 

  • Sharma P, Sampath H (2019) Mitochondrial DNA integrity: role in health and disease. Cell 8(2):100

    Google Scholar 

  • Shimmura C, Suda S, Tsuchiya KJ, Hashimoto K, Ohno K, Matsuzaki H, Iwata K, Matsumoto K, Wakuda T, Kameno Y (2011) Alteration of plasma glutamate and glutamine levels in children with high-functioning autism. PLoS One 6(10):e25340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siniscalco D, Cirillo A, Bradstreet JJ, Antonucci N (2013) Epigenetic findings in autism: new perspectives for therapy. Int J Environ Res Public Health 10(9):4261–4273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sorrentino V, Romani M, Mouchiroud L, Beck JS, Zhang H, D’Amico D, Moullan N, Potenza F, Schmid AW, Rietsch S (2017) Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity. Nature 552(7684):187–193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stein A, Sia EA (2017) Mitochondrial DNA repair and damage tolerance. Front Biosci (Landmark Ed) 22:920–943

    CAS  Google Scholar 

  • Strauss KA, Jinks RN, Puffenberger EG, Venkatesh S, Singh K, Cheng I, Mikita N, Thilagavathi J, Lee J, Sarafianos S (2015) CODAS syndrome is associated with mutations of LONP1, encoding mitochondrial AAA+ Lon protease. Am J Hum Genet 96(1):121–135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang G, Rios PG, Kuo S-H, Akman HO, Rosoklija G, Tanji K, Dwork A, Schon EA, DiMauro S, Goldman J (2013) Mitochondrial abnormalities in temporal lobe of autistic brain. Neurobiol Dis 54:349–361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tardiolo G, Bramanti P, Mazzon E (2018) Overview on the effects of N-acetylcysteine in neurodegenerative diseases. Molecules 23(12):3305

    PubMed Central  Google Scholar 

  • Toglia P, Ullah G (2016) The gain-of-function enhancement of IP3-receptor channel gating by familial Alzheimer’s disease-linked presenilin mutants increases the open probability of mitochondrial permeability transition pore. Cell Calcium 60(1):13–24

    CAS  PubMed  Google Scholar 

  • Toledo JB, Arnold M, Kastenmüller G, Chang R, Baillie RA, Han X, Thambisetty M, Tenenbaum JD, Suhre K, Thompson JW (2017) Metabolic network failures in Alzheimer’s disease: a biochemical road map. Alzheimers Dement 13(9):965–984

    PubMed  PubMed Central  Google Scholar 

  • Valiente-Pallejà A, Torrell H, Muntané G, Cortés MJ, Martínez-Leal R, Abasolo N, Alonso Y, Vilella E, Martorell L (2018) Genetic and clinical evidence of mitochondrial dysfunction in autism spectrum disorder and intellectual disability. Hum Mol Genet 27(5):891–900

    PubMed  Google Scholar 

  • Varga NÁ, Pentelényi K, Balicza P, Gézsi A, Reményi V, Hársfalvi V, Bencsik R, Illés A, Prekop C, Molnár MJ (2018) Mitochondrial dysfunction and autism: comprehensive genetic analyses of children with autism and mtDNA deletion. Behav Brain Funct 14(1):1–14

    Google Scholar 

  • Vinkhuyzen AA, Eyles DW, Burne TH, Blanken LM, Kruithof CJ, Verhulst F, White T, Jaddoe VW, Tiemeier H, McGrath JJ (2017) Gestational vitamin D deficiency and autism spectrum disorder. BJPsych Open 3(2):85–90

    PubMed  PubMed Central  Google Scholar 

  • Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, Carlsson CM, Asthana S, Zetterberg H, Blennow K (2017) Gut microbiome alterations in Alzheimer’s disease. Sci Rep 7(1):1–11

    CAS  Google Scholar 

  • Von Bernhardi R, Eugenín J (2012) Alzheimer’s disease: redox dysregulation as a common denominator for diverse pathogenic mechanisms. Antioxid Redox Signal 16(9):974–1031

    Google Scholar 

  • Wang J, Markesbery WR, Lovell MA (2006) Increased oxidative damage in nuclear and mitochondrial DNA in mild cognitive impairment. J Neurochem 96(3):825–832

    CAS  PubMed  Google Scholar 

  • Wang T, Hu X, Liang S, Li W, Wu X, Wang L, Jin F (2015) Lactobacillus fermentum NS9 restores the antibiotic induced physiological and psychological abnormalities in rats. Benefic Microbes 6(5):707–717

    CAS  Google Scholar 

  • Wang Y, Li N, Yang J-J, Zhao D-M, Chen B, Zhang G-Q, Chen S, Cao R-F, Yu H, Zhao C-Y (2020) Probiotics and fructo-oligosaccharide intervention modulate the microbiota-gut brain axis to improve autism spectrum reducing also the hyper-serotonergic state and the dopamine metabolism disorder. Pharmacol Res 157:104784

    CAS  PubMed  Google Scholar 

  • Wen-hong L, Llopis J, Whitney M, Zlokarnik G, Tsien RY (1998) Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature 392(6679):936

    Google Scholar 

  • Xie K, Qin Q, Long Z, Yang Y, Peng C, Xi C, Li L, Wu Z, Daria V, Zhao Y (2021) High-throughput metabolomics for discovering potential biomarkers and identifying metabolic mechanisms in aging and Alzheimer’s disease. Front Cell Dev Biol 9:602887

    PubMed  PubMed Central  Google Scholar 

  • Zhang J-Y, Ding Y-P, Wang Z, Kong Y, Gao R, Chen G (2017) Hydrogen sulfide therapy in brain diseases: from bench to bedside. Med Gas Res 7(2):113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Wei W, Zhao M, Ma L, Jiang X, Pei H, Cao Y, Li H (2021) Interaction between Aβ and Tau in the Pathogenesis of Alzheimer’s Disease. Int J Biol Sci 17(9):2181–2192. https://doi.org/10.7150/ijbs.57078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farhana, A., Khan, Y.S. (2021). Mitochondrial Dysfunction: A Key Player in the Pathogenesis of Autism Spectrum Disorders and Alzheimer’s Disease. In: Md Ashraf, G., Alexiou, A. (eds) Autism Spectrum Disorder and Alzheimer's Disease . Springer, Singapore. https://doi.org/10.1007/978-981-16-4558-7_2

Download citation

Publish with us

Policies and ethics