Skip to main content

From Ensemble FRET to Single-Molecule Imaging: Monitoring Individual Cellular Machinery in Action

  • Chapter
  • First Online:
Optical Spectroscopic and Microscopic Techniques

Abstract

Fluorescence resonance energy transfer is a suitable approach for observing conformational changes in biomolecules, as it is a “spectroscopic molecular ruler” sensitive to nanometer-scale distances. The experimental outcomes of FRET measurements in ensemble studies provide averaged overpopulation that could hide the details of dynamics for individual molecules. Though ensemble measurements have much application and have their advantages, including easy optical setup, easy sample preparation, etc., single-molecule methods have appeared as popular and powerful tools for the understanding of complex biophysical processes. This is because of its unique abilities to probe the molecular structure, function, and dynamics from information obtained from every individual molecule. At present, several laboratories around the world employ this technique for studying various biological systems such as cells, nucleosomes as well as important biomolecular interactions between DNA, RNA, and proteins. Single-molecule FRET assays are also widely used for studying DNA hybridization, interactions between DNA–protein, protein–protein, and protein folding, etc. The dynamic changes induced on DNA/protein substrate can easily be monitored in real-time observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stokes GG (1852) XXX. On the change of refrangibility of light. Philos Trans R Soc Lond 142:463–562

    Google Scholar 

  2. Lakowicz JR (1983) Principles of fluorescence spectroscopy. Plenum Press, New York. 496 pp

    Google Scholar 

  3. Jabłoński A (1935) Über den mechanismus der Photolumineszenz von Farbstoffphosphoren. Z Phys 94(1–2):38–46

    Google Scholar 

  4. Lakowicz JR (2013) Principles of fluorescence spectroscopy. Springer

    Google Scholar 

  5. Sahoo H (2011) Förster resonance energy transfer–A spectroscopic nanoruler: principle and applications. J Photochem Photobiol C: Photochem Rev 12(1):20–30

    CAS  Google Scholar 

  6. Paul T, Bera SC, Mishra PP (2017) Direct observation of breathing dynamics at the mismatch induced DNA bubble with nanometre accuracy: a smFRET study. Nanoscale 9(18):5835–5842

    CAS  PubMed  Google Scholar 

  7. Ha T et al (1999) Polarization spectroscopy of single fluorescent molecules. ACS Publications

    Google Scholar 

  8. Weiss VH et al (2000) The structure and oligomerization of the yeast arginine methyltransferase, Hmt1. Nat Struct Mol Biol 7(12):1165–1171

    CAS  Google Scholar 

  9. Ha T (2001) Single-molecule fluorescence methods for the study of nucleic acids. Curr Opin Struct Biol 11(3):287–292

    CAS  PubMed  Google Scholar 

  10. Lakowicz JR, Masters BR (2008) Principles of fluorescence spectroscopy. J Biomed Opt 13(2):029901

    Google Scholar 

  11. Selvin PR (2000) The renaissance of fluorescence resonance energy transfer. Nat Struct Mol Biol 7(9):730

    CAS  Google Scholar 

  12. Ha T (2001) Single-molecule fluorescence resonance energy transfer. Methods 25(1):78–86

    CAS  PubMed  Google Scholar 

  13. Clegg RM (1992) [18] Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol 211:353–388

    CAS  PubMed  Google Scholar 

  14. Weiss S (1999) Fluorescence spectroscopy of single biomolecules. Science 283(5408):1676–1683

    CAS  PubMed  Google Scholar 

  15. Bandyopadhyay D, Mishra PP (2020) Real-time monitoring of the multistate conformational dynamics of polypurine reverse Hoogsteen hairpin to capture their triplex-affinity for gene silencing by smFRET microspectroscopy. J Phys Chem B 124(38):8230–8239

    CAS  PubMed  Google Scholar 

  16. Mondal S, Mishra PP (2021) Direct observation of effect of crowding induced macromolecular hydration on molecular breathing in the stem of Fork-DNA by single-molecule FRET microspectroscopy. Int J Biol Macromol 167:559–569

    CAS  PubMed  Google Scholar 

  17. Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5(6):507–516

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sisamakis E et al (2010) Accurate single-molecule FRET studies using multiparameter fluorescence detection. Methods Enzymol 475:455–514

    CAS  PubMed  Google Scholar 

  19. Patonay G et al (2004) Noncovalent labeling of biomolecules with red and near-infrared dyes. Molecules 9(3):40–49

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ha T, Selvin PR (2008) Single-molecule techniques: a laboratory manual. Cold Spring Harbor Laboratory Press

    Google Scholar 

  21. Ishikawa-Ankerhold HC, Ankerhold R, Drummen GP (2012) Advanced fluorescence microscopy techniques—Frap, Flip, Flap. Fret and flim Molecules 17(4):4047–4132

    CAS  PubMed  Google Scholar 

  22. Walter NG et al (2008) Do-it-yourself guide: how to use the modern single-molecule toolkit. Nat Methods 5(6):475–489

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sasmal DK et al (2016) Single-molecule fluorescence resonance energy transfer in molecular biology. Nanoscale 8(48):19928–19944

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cosa G et al (2001) Photophysical properties of fluorescent DNA-dyes bound to single-and double-stranded DNA in aqueous buffered solution¶. Photochem Photobiol 73(6):585–599

    CAS  PubMed  Google Scholar 

  25. Duzdevich D, Redding S, Greene EC (2014) DNA dynamics and single-molecule biology. Chem Rev 114(6):3072–3086

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lamichhane R et al (2010) Single-molecule FRET of protein–nucleic acid and protein–protein complexes: surface passivation and immobilization. Methods 52(2):192–200

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ha T et al (2002) Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419(6907):638–641

    CAS  PubMed  Google Scholar 

  28. McKinney SA et al (2003) Structural dynamics of individual Holliday junctions. Nat Struct Biol 10(2):93–97

    CAS  PubMed  Google Scholar 

  29. Park J et al (2010) Single-molecule analysis reveals the kinetics and physiological relevance of MutL-ssDNA binding. PLoS One 5(11):e15496

    PubMed  PubMed Central  Google Scholar 

  30. Lee S-J, Syed S, Ha T (2018) Single-molecule FRET analysis of replicative helicases. In: Molecular motors. Springer, pp 233–250

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padmaja Prasad Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Islam, F., Basu, M., Mishra, P.P. (2022). From Ensemble FRET to Single-Molecule Imaging: Monitoring Individual Cellular Machinery in Action. In: Sahoo, H. (eds) Optical Spectroscopic and Microscopic Techniques. Springer, Singapore. https://doi.org/10.1007/978-981-16-4550-1_6

Download citation

Publish with us

Policies and ethics