Skip to main content

Genetic Testing

  • Chapter
  • First Online:
Hereditary Breast and Ovarian Cancer
  • 527 Accesses

Abstract

Genetic testing for HBOC can be a life-determining event for clients. Therefore, it is very important when, to whom, and by which method the genetic testing is performed. Genetic testing has a variety of purposes, including HBOC diagnosis, companion diagnosis, relative diagnosis, carrier diagnosis, and confirmation of secondary findings. Who is the best test candidate depends on the purpose of the test. Various sizes of BRCA1/BRCA2 variants have been reported, from single nucleotide substitutions and small indels to large-sized structural abnormalities. The locus of variants is distributed not only in exons but also in splice sites and deep introns. There are various tests depending on the variant size, from the specific variant detection by Sanger sequencing to multi-gene panel using next-generation sequencing, and there are also several companion diagnostics to determine the indications for molecular targeted drugs. It also introduces the accuracy control required for clinical diagnosis and the limitations of interpretation of results. After reading this chapter, you will be able to choose the genetic testing that best suits your purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994 Oct 7;266(5182):66–71. https://doi.org/10.1126/science.7545954.

    Article  CAS  PubMed  Google Scholar 

  2. Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, Collins N, Gregory S, Gumbs C, Micklem G. Identification of the breast cancer susceptibility gene BRCA2. Nature. 1995 Dec 21-28;378(6559):789–92. https://doi.org/10.1038/378789a0.

    Article  CAS  PubMed  Google Scholar 

  3. Brenner S, et al. Nat Biotechnol. 2000;18:630.

    Article  CAS  Google Scholar 

  4. International Human Genome Sequencing Consortium. Nature. 2001;409:860.

    Article  Google Scholar 

  5. Ronaghi M, et al. Science. 1998;281:5375.

    Article  Google Scholar 

  6. Association for Medical Pathology v. Myriad Genetics, Inc., 569 U.S.___. 133 S.Ct.2107 (2013).

    Google Scholar 

  7. Seynaeve C, Verhoog LC, van de Bosch LM, van Geel AN, Menke-Pluymers M, Meijers-Heijboer EJ, van den Ouweland AM, Wagner A, Creutzberg CL, Niermeijer MF, Klijn JG, Brekelmans CT. Ipsilateral breast tumour recurrence in hereditary breast cancer following breast-conserving therapy. Eur J Cancer. 2004;40:1150–8.

    Article  CAS  Google Scholar 

  8. Valachis A, Nearchou AD, Lind P. Surgical management of breast cancer in BRCA–mutation carriers: a systematic review and meta–analysis. Breast Cancer Res Treat. 2014;144(3):443–55.

    Article  CAS  Google Scholar 

  9. Gao X, Fisher SG, Emami B. Risk of second primary cancer in the contralateral breast in women treated for early-stage breast cancer: a population-based study. Int J Radiat Oncol Biol Phys. 2003;56:1038–45.

    Article  Google Scholar 

  10. Waener E, et al. J Clin Oncol. 2011;29:1664–9.

    Article  Google Scholar 

  11. Lord CJ, Ashworth A. BRCAness revisited. Nat Rev Cancer. 2016 Feb;16(2):110–20. https://doi.org/10.1038/nrc.2015.21.

    Article  CAS  PubMed  Google Scholar 

  12. Li X, You R, Wang X, Liu C, Xu Z, Zhou J, et al. Effectiveness of prophylactic surgeries in BRCA1 or BRCA2 mutation carriers: meta–analysis and systematic review. Clin Cancer Res. 2016;22(15):3971–81.

    Article  CAS  Google Scholar 

  13. Rebbeck TR, Kauff ND, Domchek SM. Meta–analysis of risk reduction estimates associated with risk–reducing salpingo–oophorectomy in BRCA1 or BRCA2 mutation carriers. J Natl Cancer Inst. 2009;101(2):80–7.

    Article  CAS  Google Scholar 

  14. Domchek SM, Friebel TM, Singer CF, Evans DG, Lynch HT, Isaacs C, et al. Association of risk–reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA. 2010;304(9):967–75.

    Article  CAS  Google Scholar 

  15. Ingham SL, Sperrin M, Baildam A, Ross GL, Clayton R, Lalloo F, et al. Risk–reducing surgery increases survival in BRCA1/2 mutation carriers unaffected at time of family referral. Breast Cancer Res Treat. 2013;142(3):611–8.

    Article  CAS  Google Scholar 

  16. National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology. Genetic/familial high-risk assessment: Breast and ovarian, and pancreatic. ver1. 2020.

    Google Scholar 

  17. https://www.nytimes.com/2013/05/14/opinion/my-medical-choice.html?_r=2&

  18. https://www.nsgc.org/Policy-Research-and-Publications/Position-Statements/Position-Statements/Post/genetic-testing-of-minors-for-adult-onset-conditions

  19. Bryce A. Seifert et al. germline analysis from tumor-germline sequencing dyads to identify clinically actionable secondary findings. Clin Cancer Res. 2016 Aug 15;22(16):4087–94. https://doi.org/10.1158/1078-0432.CCR-16-0015.

    Article  CAS  Google Scholar 

  20. Mandelker D, Donoghue M, Talukdar S, Bandlamudi C, Srinivasan P, Vivek M, Jezdic S, Hanson H, Snape K, Kulkarni A, Hawkes L, Douillard JY, Wallace SE, Rial-Sebbag E, Meric-Bersntam F, George A, Chubb D, Loveday C, Ladanyi M, Berger MF, Taylor BS, Turnbull C. Germline-focussed analysis of tumour-only sequencing: recommendations from the ESMO precision medicine working group. Ann Oncol. 2019 Aug 1;30(8):1221–31. https://doi.org/10.1093/annonc/mdz136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Frank TS, Manley SA, Olopade OI, Cummings S, Garber JE, Bernhardt B, Antman K, Russo D, Wood ME, Mullineau L, Isaacs C, Peshkin B, Buys S, Venne V, Rowley PT, Loader S, Offit K, Robson M, Hampel H, Brener D, Winer EP, Clark S, Weber B, Strong LC, Thomas A. Sequence analysis of BRCA1 and BRCA2: correlation of mutations with family history and ovarian cancer risk. J Clin Oncol. 1998;16:2417–25.

    Article  CAS  Google Scholar 

  22. Kang E, Park SK, Lee JW, Kim Z, Noh WC, Jung Y, Yang JH, Jung SH, Kim SW. KOHBRA BRCA risk calculator (KOHCal): a model for predicting BRCA1 and BRCA2 mutations in Korean breast cancer patients. J Hum Genet. 2016 May;61(5):365–71. https://doi.org/10.1038/jhg.2015.164.

    Article  CAS  PubMed  Google Scholar 

  23. Parmigiani G, Berry D, Aguilar O. Determining carrier probabilities for breast cancer-susceptibility genes BRCA1 and BRCA2. Am J Hum Genet. 1998;62:145–58.

    Article  CAS  Google Scholar 

  24. Lee A, Yang X, Tyrer J, Gentry-Maharaj A, Ryan A, Mavaddat N, Cunningham AP, Carver T, Archer S, Leslie G, Kalsi J, Gaba F, Manchanda R, Gayther S, Ramus S, Walter F, Tischkowitz M, Jacobs I, Menon U, Easton D, Pharoah P, Antonio A. A comprehensive epithelial Tubo-ovarian cancer risk prediction model incorporating genetic and epidemiological risk factors. medRxiv. 2020;12(04):20244046. https://doi.org/10.1101/2020.12.04.20244046.

    Article  Google Scholar 

  25. Timothy R. Rebbeck, et al. association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA. 2015 Apr 7;313(13):1347–61. https://doi.org/10.1001/jama.2014.5985.

    Article  CAS  Google Scholar 

  26. Whittemore AS, Gong G, John EM, et al. Prevalence of BRCA1 mutation carriers among U.S. non-Hispanic whites. Cancer Epidemiol Biomark Prev. 2004;13(12):2078–83.

    CAS  Google Scholar 

  27. Prevalence and penetrance of BRCA1 and BRCA2 mutations in a population-based series of breast cancer cases. Anglian Breast Cancer Study Group. Br J Cancer. 2000;83(10):1301–8.

    Article  Google Scholar 

  28. Palma MD, Domchek SM, Stopfer J, Erlichman J, Siegfried JD, Tigges-Cardwell J, Mason BA, Rebbeck TR, Nathanson KL. The relative contribution of point mutations and genomic rearrangements in BRCA1 and BRCA2 in high-risk breast cancer families. Cancer Res. 2008;68:7006–14.

    Article  Google Scholar 

  29. Ewald IP, Ribeiro PL, Palmero EI, Cossio SL, Giugliani R, Ashton-Prolla P. Genomic rearrangements in BRCA1 and BRCA2: a literature review. Genet Mol Biol. 2009;32:437–46.

    Article  CAS  Google Scholar 

  30. Kang P, Mariapun S, Phuah SY, Lim LS, Liu J, Yoon SY, Thong MK, Mohd Taib NA, Yip CH, Teo SH. Large BRCA1 and BRCA2 genomic rearrangements in Malaysian high risk breast-ovarian cancer families. Breast Cancer Res Treat. 2010;124:579–84.

    Article  CAS  Google Scholar 

  31. Judkins T, Rosenthal E, Arnell C, Burbidge LA, Geary W, Barrus T, Schoenberger J, Trost J, Wenstrup RJ, Roa BB. Clinical significance of large rearrangements in BRCA1 and BRCA2. Cancer. 2012;118:5210–6.

    Article  CAS  Google Scholar 

  32. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL. ACMG laboratory quality assurance committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the association for molecular pathology. Genet Med. 2015 May;17(5):405–24. https://doi.org/10.1038/gim.2015.30.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Evans DGR, van Veen EM, Byers HJ, Wallace AJ, Ellingford JM, Beaman G, Santoyo-Lopez J, Aitman TJ, Eccles DM, Lalloo FI, Smith MJ, Newman WG. A. Dominantly inherited 5' UTR variant causing methylation-associated silencing of BRCA1 as a cause of breast and ovarian cancer. Am J Hum Genet. 2018 Aug 2;103(2):213–20. https://doi.org/10.1016/j.ajhg.2018.07.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hömig-Hölzel C, Savola S. Diagn. Multiplex ligation-dependent probe amplification (MLPA) in tumor diagnostics and prognostics. Mol Pathol. 2012 Dec;21(4):189–206. https://doi.org/10.1097/PDM.0b013e3182595516.

    Article  CAS  Google Scholar 

  35. Inazawa J, Inoue J, Imoto I. Comparative genomic hybridization (CGH)-arrays pave the way for identification of novel cancer-related genes. Cancer Sci. 2004 Jul;95(7):559–63. https://doi.org/10.1111/j.1349-7006.2004.tb02486.x.

    Article  CAS  PubMed  Google Scholar 

  36. Harris TJ, McCormick F. The molecular pathology of cancer. Nat Rev Clin Oncol. 2010;7(5):251–65. https://doi.org/10.1038/nrclinonc.2010.41. Epub 2010 Mar 30

    Article  CAS  PubMed  Google Scholar 

  37. Santana Dos Santos E, Lallemand F, Petitalot A, Caputo SM, Rouleau E. HRness in breast and ovarian cancers. Int J Mol Sci. 2020 May 28;21(11):3850. https://doi.org/10.3390/ijms21113850.

    Article  CAS  PubMed Central  Google Scholar 

  38. Vail PJ, Morris B, van Kan A, Burdett BC, Moyes K, Theisen A, Kerr ID, Wenstrup RJ, Eggington JM. Comparison of locus-specific databases for BRCA1 and BRCA2 variants reveals disparity in variant classification within and among databases. J Community Genet. 2015 Oct;6(4):351–9. https://doi.org/10.1007/s12687-015-0220-x.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yrer J, Duffy SW, Cuzick J. A breast cancer prediction model incorporating familial and personal risk factors. Stat Med. 2004;23(7):1111–30.

    Article  Google Scholar 

  40. Bondy ML, Newman LA. Breast cancer risk assessment models: applicability to African-American women. Cancer. 2003;97(1 Suppl):230–5.

    Article  Google Scholar 

  41. Claus EB, Risch N, Thompson WD. Autosomal dominant inheritance of early-onset breast cancer. Implications for risk prediction. Cancer. 1994;73(3):643–51.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sana Yokoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yokoi, S. (2021). Genetic Testing. In: Nakamura, S., Aoki, D., Miki, Y. (eds) Hereditary Breast and Ovarian Cancer . Springer, Singapore. https://doi.org/10.1007/978-981-16-4521-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4521-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4520-4

  • Online ISBN: 978-981-16-4521-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics